最近网上流行一句话:宇宙的尽头是带货。
简单来说,就是以前那套“羊毛出在猪身上”的变现方式即内容向观众和粉丝免费、靠品牌主广告主付费,已经不好用了。企业“花钱赚吆喝”的品宣预算减少,而是更看重品效合一,希望将“有效流量”转化成实际的业绩增长。所以越来越多的网红博主、大V甚至某些新闻当事人,最后都走向了“带货”。
精准、高效、低成本的营销需求,不只卷网红大V们,也在卷大模型。
一次交流中,一位银行从业者直言:金融行业的数字化是建设比较久的,目前“数字营销”也遇到了关于增长的困境,从一线业务员到CMO首席营销官,都希望能够将营销的迭代速度加快,各个环节实现从效率到效果的提升,通过AI智能营销来形成一条更大的增长曲线。
“但是,跨越从数字营销到智能营销之间的鸿沟,以前这一步,大家迈得非常累。借助大模型的机会,或许我们可以更快地把这一步迈过去。”
从数字营销进化到AI营销,在大模型的加持下,进一步提质降本增效,带来真金白银的效果提升与业务增长,让许多行业和企业为之兴奋。
在过去的2023年里,我们看到百度、腾讯、阿里、京东等基础模型厂商,以及金融、教育、广告、传媒等多个领域的企业与垂类ISV数字化服务商,都在积极推动大模型在营销场景落地。
那么, AI营销与互联网时代的数字化营销,究竟有什么本质区别?大模型真的给营销带来了实质性的改变吗?企业在使用AI营销时需要考虑哪些现实问题?
本文将结合我们的一线采访与思考,尝试剖析这些问题。
从数字营销到AI营销,为什么要“跨越鸿沟”?
从数字化营销到智能化营销,为什么是企业眼中必须跨越的一道“鸿沟”?
大家可能都听说过一句名言:我知道我的广告费至少浪费了一半,但我不知道究竟是哪一半。对企业来说,营销的投入产出比ROI,始终都有优化提升的空间。
降本增效,提高营销ROI,这件事情在数字化营销阶段,有被解决,但没完全解决。
所谓数字化营销,就是在任何营销活动、整个流程,都跟数字紧密捆绑在一起,通过数据进行机会观察,对大量用户进行画像、分层、测算,然后将活动物料进行数字化的广告投放。
和传统营销的问卷调查、人工经验相比,数字化技术的全流程应用,让营销效率得到了大幅提升。但是,数字化改造的诸多问题,也随着大量行业和企业的应用而暴露出来。
最核心的问题就是:数据孤岛。
营销工作涉及多个流程,传统意义上的数据中台,企业内部形成了各种营销数据系统,但不同系统的用户数据及行为数据之间相互独立,彼此不打通,数据很多但用不起来。导致的结果就是:
人更累了。
一个营销活动,需要多人跨岗位跨部门协作,在企业内部也变得越来越细分。如果做一场大型活动,比如双十一、618这类大促,营销人员通常需要在十几个系统里来回倒腾,其中有大量重复劳动,比如一份物料在多个渠道平台系统上反复粘贴,手动进行大量的权益选择、页面搭建,这些低价值的重复劳动非常耗时,让营销人员无法把更多精力放在高价值的思考优化上。
人更多了。
由于营销业务的细分,企业不得不为多个环节配置更多的人员,一个人员只负责某个环节,只用关心怎么把单一模块做精做好,投放人员关心投放ROI,活动策划关注匹配营销目标的活动设计,内容运营希望设计师帮自己设计出更好的文案、素材、图片……过于细分的营销“流水线”,需要大量营销人员做“螺丝钉”,只干自己的一亩三分地,无法从全流程、全局视角去优化结果,不仅会影响营销效果,也不利于个人的职业发展。
人更难了。
数字化营销,对人员的技能要求也更高了。基于数据进行分析和复盘,就是一个门槛非常高的复杂任务。其中消费者怎么想的,决策过程是什么,怎么埋点,监控哪些数据,用户在不同页面的流失率、操作时长哪个步骤影响了整体流程?这些都只能依靠营销人员的经验,以往只能通过前辈传授和自己试错。
结果就是,一些企业招不到这样专业的营销人才,靠拍脑袋的方式来做营销,在广告创意、活动设计、客服话术上花费了大量的精力,最后消费者用户的反馈却不如人意。
有没有可能,让一个人变成一支营销队伍?
这就需要为营销人员配备一个全流程使能的“AI副驾驶”,能够从一开始就将数据与营销目标相结合,让数据贯穿整个过程和所有环节,并结合营销知识,自动做出最佳决策,替营销人员来进行洞察、写方案、做物料、筛渠道、完成个性化精准投放,最后复盘调整。
有了“AI副驾驶”,人更轻松了,人用得少了,人的技能也被全方面提升,这是为什么企业要积极从数字化营销跨入AI营销。
大模型,让AI营销天堑变通途
以前营销环节也有AI参与,为什么大模型出现后,营销人员才有了“AI副驾驶”?
答案是:传统AI做营销,太慢太贵。
此前也有很多互联网企业、电商平台将AI算法引入到智能推荐、海报创作、智能客服问答等场景之中,但效果总体来说,不咋地。
智能客服被普遍认为是“人工智障”,只能解决一些基础问题,用户还是要找人工,降本增效的效果有限。
另外,传统AI算法的泛化能力不高,必须针对专项任务进行定制化训练,开发起来非常耗时,比如一个银行的智能客服,需要人工训练师拆解话术文档、生成QA,之后再扩展标准、投入到一线中,开发周期基本上一个月起步,六个月都有可能。一些中小企业请不起专业的开发团队,也等不起那么长的开发周期。
大模型出现之后,如同一桥飞架南北,将“AI营销”的天堑变通途。
洞察环节:一个基座模型,统筹全局,拉通数据孤岛。
大模型强大的泛化能力,一个基座模型可以调度大量专有小模型,通过一个交互入口,与营销人员进行交互,把各个系统、数据孤岛都串联起来,做到更全面的智慧洞察。在腾讯云的企点分析平台上,销售人员只要问一句“哪个产品卖得最好”,就可以实现准确的商业分析;在京东的一站式AI增长平台上,营销人员只需打开领航者AI营销助手,就能完成全链路的活动配置。
设计环节:一个营销大脑,集合行业知识,消除经验鸿沟。
将营销知识与行业Knowhow,压缩到大模型里面,可以消除中小企业、运营新人等在营销经验知识上的差距,快速进阶为AI营销达人。
“这给了中小银行一个掀桌子的机会”,一位受访者告诉我们,“以前中小银行欠缺的不仅是数字化系统,还有经营相关的一些行业Knowhow,比如怎么做产品设计,怎么把产品更好的规划卖给用户,有没有更好的营销手段。过去要积累这些经验,要么招聘大量的相关专业人才,再花一定的时间蹚出自己的路来。但是到了大模型时代,大模型赋能金融,就让它们有机会弯道超车,弥补上很多经验上的短板”。
执行环节:一个生成与创造工具,生产力提质增效。
到了具体的营销活动落地环节,需要大量的物料、文案创意、投放配置等工作,创意素材和精准触达,是广告的核心竞争力,但是重复劳动量极大。尤其是每到“双十一”“元旦大促”等节点,需要创建和投放大规模的物料,以往只能通过“人海战术”,营销人员加班来解决。
大模型强大的生成和创作能力,可以基于前期的全局洞察和领域知识,生成最佳物料和投放方案。
领航者的插件AI营销助手,将主流模型的图片生成能力迁移至金融领域,专注于营销所需的各类素材生成。快速生成符合业务背景的,能够在京东金融场内投放的首页弹窗图、启动图、通用推荐图等常用资源位的图片,生图率和采用率达到中阶设计师水平。
在搜索推广、信息流、轻舸等场景中,百度营销打造的AIGC营销工具擎舵轻量版,可根据所选计划、单元、关键词等信息智能推荐版权图片和AI图片,还可通过用户自主表达推广业务、画面主体、比例等,生成创意图片,用户用相关图片用以投放测试,“广撒网”来获取更多流量。
除此之外,京东、百度、腾讯云还提供数字人平台,合成数字主播,进行产品和服务的卖点信息的视频讲解,帮助企业拓客。
总结一下,大模型对营销的全流程进行重构,每一个环节的降本增效,加起来就是AI营销整体的加速进化。
大模型营销,不能有断点,也不该有断点
一方面,企业需要改变数字孤岛的营销问题,实现全链路、全流程的数据洞察和优化,对整个流程进行提质增效;另一方面,大模型在认知智能、泛化能力、生成和创造等方面的强大潜力,确实可以从前期洞察、交互沟通、物料生成、分析决策等方面,全流程落地应用。
所以,内外压力之下,全流程重构,大模型厂商没有讨价还价的可能。
比如百度世界2023上,百度商业生态体系化发布“AI Native商业全景应用”,从品牌到内容,再到效果与经营,重构营销全链路。
京东推出的新一代营销增长平台领航者,以全局视角为中心、覆盖营销全生命周期,提供全链路的工具/插件。
腾讯云则为营销场景提供了从算力、模型、开发平台/工具到应用的全程支持,让客户自动调用相应的API。
在营销和智能客服领域有十多年积累的容联云,推出基于数智大模型的“容犀智能”,实现了通用批量场景的AI全覆盖,比如私域加分、营销通知等,以及用户全生命周期的全覆盖,从新用户获取,到活跃用户、流失用户,提供不同场景相应的营销工具。
总结一下:全流程重构,是各大大模型厂商拿下“AI营销”这一战场的前提,做不到就上不了牌桌。
扎下“王旗”,还要经过哪些考验?
营销场景,是一个付费意愿高、高价值、效果明显的落地场景,也是大模型厂商的必争之地和关键战场。
基于大模型的全流程重构的AI营销体系框架,需要坚实的内核,来支撑企业客户的信心。想要在营销战场扎下“王旗”,有几个方面的赛点:
第一,基座模型的技术先进性。
人们常说技术公司不能“拿着锤子找钉子”,但如果手里没有锤子,即使发现了钉子也砸不下去。对于AI营销服务商来说,基座模型的能力是最为关键的。
基座模型的认知智能水平不高,生成内容质量差,容易出现幻觉,写商品文案胡说八道,那根本不可能为营销业务所用。
一位京东的技术人员告诉我们,如果AI生成的文案审核通过率只有70%-80%,AIGC对于业务的价值就会大打折扣,必须让AIGC的审核通过率达到95%以上,业务方才可以使用。
再比如,智能语音在营销场景的应用,最难的一点是“你这东西不行,所有人一下子就能听出来了”。比如智能客服询问用户“你要买的苹果手机没了,要不要换一款颜色”,这时候消费者可能都会想一想,这一想,人机交互就被打断了,但AI智能客服要判断你究竟是说完了还是在考虑,是该等你说完还是直接接话,技术上的难度就非常大,而一旦判断错误,用户体验就会很不好。
总之,营销业务场景是很复杂的,涉及高级智能的一些前沿技术,因此AI营销的基座模型必须具备技术上的绝对领先性。
第二,对业务场景的理解和数据积累。
应用于营销场景的大模型,需要完成比较严肃的业务应用,比如帮助老年客户在银行开户,生成一张符合金融广告规范要求的海报,对可控性的要求就非常高,是客户选择大模型营销解决方案的一条重要红线。
容联云告诉我们,就以一线营销人员所需要的话术为例,一线人员每天要打很多电话,企业不可能把所有电话都听一遍,很多话术没有提炼出来,也无法从语音数据中解析出一些行业优秀的话术,那么沟通的业务目标转化效果,比如开户、填单、购买等,就很难去洞察和优化。很多企业以前的话术库,其实是只有量,没有质。目前,容联云通过大模型去提取问题,把一线及时反馈出来的高频问题,通过自动化手段及时挖掘出来,再反馈给主管或座席,更快地洞察客户关注的问题,可以改善服务质量,提高客户满意度。
高质量数据和行业Knowhow的数字化积累,让大模型真正深入理解营销业务,也是判断AI营销方案的一个标准。
第三,工程能力做出好用的产品。
技术很先进,但产品很难用,是阻碍AI落地的一个主要问题。就拿AI营销一站式工具来说,全流程贯通是很多企业都在追求的目标,但很少有企业能够把所有营销工具都进行跨平台、跨系统的整合。
要么工具不全不完整,运营人员还是要在多个系统中来回切换;要么简单地堆砌在一起,只提供一个聚合入口,运营人员需要在繁杂的应用中反复查找,无法快速执行完成。目前头部AI营销产品的做法是,通过AI agent智能编排调度,把大模型变成一个大脑中枢,对不同的工具API进行编排,自动把营销目标拆解到不同任务并执行。
营销人员只需要抓住一个营销目标,把预算、目标人群、投放形式等关键要素,跟大模型说明白,大模型就会结合领域知识,对目标任务进行拆解,并对其中的重复劳动进行折叠压缩。这样,营销小白也可以很快“抄作业”,让大模型引导到对应的系统、应用和节奏,完成整个营销过程。
从这个角度看,AI营销的产品化能力,就是把大模型学到的知识经验,让营销人员抄对、抄好、抄快。
最后,还要考虑成本的问题。
一定要用大模型吗?以前的小模型还能不能用?如果所有的环节全用大模型,算力成本、开发工程量谁来出?增加的支出能否覆盖减少的成本呢?
投产比是否合理,是企业面临的现实问题,也是是否采取大模型解决方案的底层逻辑。目前业界的普遍做法,是大小模型配合。
小模型来完成一些确定性高、离线、特定任务,大模型负责调度、指挥、认知理解。举个例子,在客服对话中,用大模型来挖掘金牌话术,再用小模型进行推荐,把好的话术推给普通销售,提高他们的业务能力,而客户的智能化综合成本也更低了。
再比如,金融行业的营销环节,基金的选基工具,需要非常高的确定性,不能出一点差错,大小结合,用好大模型的推理能力和语言理解能力,用好小模型的精准化识别能力,可以更好地达成业务目标。
看到这里不难发现,想要在AI营销这个战场插下“王旗”,对大模型厂商和解决方案服务上的挑战,其实不小,竞争才刚刚开始。
而作为大模型商业化落地的首选站,AI营销也经历了一场心态上的“过山车”,从2023年初的极度兴奋、不能错过,逐渐冷静下来,开始把做精做专做细。
“大家对通用大模型期待很高,但它不一定是满足行业场景需求的最优解。针对某个单一的场景,解决客户的业务问题,让大模型的商业化变现能力获得行业认可”,一位从业多年的数字化服务商这样说到。
在企业的实际场景中,真正解决了某个问题,打造出实用性高的智能服务,大模型才有未来。而AI营销,就是大模型真正抵达和改变的第一个关键战场。
免责声明:此文内容为第三方自媒体作者发布的观察或评论性文章,所有文字和图片版权归作者所有,且仅代表作者个人观点,与 无关。文章仅供读者参考,并请自行核实相关内容。投诉邮箱:editor@fromgeek.com。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。