智能算力时代,一个中国答案

今年以来,随着AI大模型极速获得认可,全球智能化产业迎来了新的发展高峰。全球各大科技厂商纷纷布局大模型,国内更是出现了“百模大战”的盛况。

而随着大模型的快速崛起,一个早已萦绕在AI行业多年的问题也进一步暴露:针对AI任务的专项算力,在需求持续拉大中,供给持续紧缺。

一时之间,世界各国普遍出现了“算力慌”“一卡难求”的现象,甚至有欧美科技企业开始以GPU资源进行融资的奇特现象出现。

这些现象明确地告诉我们,智能时代,算力即生产力,算力即资本。面向智能时代,如何破解算力难,算力荒的挑战?如何长足、健康发展智能算力技术?如何让智能算力成为走向科技自立自强的助力?

这些问题,需要一个确切的答案。

8月18日,作为中国首个以数据中心算力赋能为主题的省部联办会议,2023中国算力大会在宁夏银川开幕,本届大会以“算领新产业潮流,力赋高质量发展”为主题,详细展示了中国算力产业的发展前景与最新成果。

其中,紫光股份旗下新华三集团携新一代智慧计算产品、技术和解决方案亮相现场。会上,新华三与中国信息通信研究院共同发布了《2023智能算力发展白皮书》。

面向汹涌而来的智能时代,在中国算力大会当中,可以找到和确认关于智能算力的“中国答案”。

智能算力的定义与趋势

面对汹涌而来的AI浪潮,可能每个人都会听过水涨船高的GPU,但可能很少人能够详细说出,究竟什么是智能算力?

从基础技术层面看,智能算力也称人工智能算力,是面向人工智能应用,提供人工智能算法模型训练与模型运行服务的计算机系统能力。

当AI技术的重要性不断提升,智能算力作为基础设施的价值也在提升。可以说,智能算力是智能应用、智能产业的底座,是发展智能经济,构筑智能社会的前提条件。

而无论从各种方面来看,智能算力都处在一个极速的爆发期。截至到2022年底,全球算力总规模达到650 EFLOPS,其中智能算力规模为142 EFLOPS,规模占比达到了惊人的21.9%,与去年相比增加了25.7%。可以说,在整个计算产业版图中,智能算力是目前增长最快、需求最高、受关注程度最大的一种。

而具体到中国智能算力发展,可以看到截止2022年底,中国算力总规模为180 EFLOPS,智能算力规模为41 EFLOPS。也就是说,智能算力规模占比达22.7%,与去年相比增加了41.4%。这样的增速远远超过了全球智能算力的平均增长。也就是说,目前中国智能算力产业处在需求大、增长快、价值高的发展阶段。可以看到,半导体与计算公司纷纷瞄准智能算力浪潮,推出了针对性的产品与解决方案。比如说,新华三就推出了专门面向大模型训练的AI服务器及51.2T、800G CPO硅光数据中心交换机,以及支持大算力调度的傲飞算力平台。

了解了智能算力的定于与发展速度后,下一个问题是,智能算力最终带来的应用价值是什么?

从目前情况来看,元宇宙、自动驾驶、AIGC、数字孪生等最为火热的科技风口,似乎都离不开智能算力的支持。比如说,AIGC是目前非常火爆的领域,在全球范围内掀起了投资与建设热潮。而AIGC的背后是算力、数据、算法等核心要素的有机融合,其使用的模型越大,对算力要求越高。从目前趋势来看,未来AIGC对智能算力的需求将会更加强劲,从而智能算力相关产业领域的价值得到重塑。

在2023中国算力大会现场可以看到,各行各业都在关注智能算力的解决方案与供给情况,期待获得更有力的智能算力支持。这就是因为,智能算力是智能技术与应用的源头,是智能化创新的底座。

接下来,我们可以由此深入,探索智能算力发展路上的更多可能。

智能算力面对的挑战与机遇

就任何一个科技产业而言,都必须不断在“遭遇挑战-解决问题-产业升级”的循环中完成发展,智能算力也不例外。可以看到,在全球科技产业同时涌现出巨大的智能算力需求情况下,这一领域出现了显著的供不应求情况,进而造成了“算力慌”“算力难”等现象。与此同时,伴随着AI技术的不断发展,能耗、安全、生态合作等问题也逐渐暴露了出来。但有挑战才有发展目标,才有相关企业与从业者的机遇节点。

《2023智能算力发展白皮书》中指出,智能算力发展具有五大挑战。同时,《白皮书》中也详细给出了每项挑战的解决方案,帮助业界夯实共识,捕捉发展窗口。

比如说,算力需求是目前智能算力最为核心,也是最为重大的挑战。智能算力需求的急剧上升是全球AI领域共同面对的问题,而为了应对包括智能算力在内的算力紧缺,推动社会化的算力集约型发展,中国创造性提出并实施了东数西算工程。同时也要看到,数据中心之间的联动挑战,造成了算力资源配置效率依旧有待提升。解决这些问题,构成了智能算力发展与东数西算持续推进中的重大机遇。

为此,《白皮书》中提出了通过构建智算中心、云计算中心等升级算力资源供给,同时通过网络将数据源周围闲散算力调度起来的解决方案。搭配提高算力使用效率、发展新型网络架构、建立统一算力调度平台等方案,可以最大化发挥出东数西算相关价值,满足中国产业各界对智能算力的巨大需求。

除了算力需求之外,《白皮书》中还提出了能耗挑战不断加大;算法复杂度持续提升;AI模型与AI计算面临的数据隐私与安全问题;智能算力相关产业生态合作难题等一系列挑战,并针对这些挑战给出了具体的解决方案建议。可以说,目前阶段智能算力依旧处在高速发展的初始期与黄金期。只有找准挑战,高效发力,才能最大化捕捉智能算力发展过程中的红利。

面向未来,中国答案

在总结了定义,审视了挑战之后,接下来最为关键的问题是:面对智能算力发展,中国科技产业应该如何破局?如何给出符合时代趋势与潮流的答案。

为此,《白皮书》深层透视了智能算力的未来发展,并为各个相关产业领域提供了发展建议。其中指出,智能算力发展未来将有五大基本趋势:

1.人工智能加速渗透,多样化场景催生多元化算力需求。

面向未来,AI技术将不是单独存在,而是 渗透到场景与应用当中。因此,异构化、多样化的计算需求将持续增加,云边端协同的智能计算将成为主流。在这些因素的推动下,我们将进入多样性计算的新时代。

2.政策驱动,智能算力低碳发展成硬性要求。

智能算力的发展恰好与双碳目标的践行保持同频。因此,未来必定会在政策导向下采取更加地毯化的算力获取方式来满足AI需求。低碳技术也将成为计算与AI产业一项核心的竞争力。

3.边缘智能应运而生,边缘计算与人工智能融合发展。

相对来看,从云端获取智能算力,会产生对网络环境的极大依赖,而本地化的智能算力又面临着高昂的硬件成本。因此,未来极大可能会将智能算力获取方式向边缘侧迁移,因此AI技术将会与边缘计算产业同步发展。

4.智算中心建设加速,应对高质量算力需求。

在东数西算与新一代数据中心大潮下,提供异构计算资源的智算中心将成为新的风口。智算中心将提供指数级的智能算力提升,实现AI场景的性能升级与能耗降低。

5.模型规模不断扩展,海量多元化数据亟需巨量化算力。

自 学习崛起以来,一个清晰可见的规律是模型规模越来越大,以模型规模带来的智能涌现效果愈发清晰。有理由相信,接下来将出现超大参数量的巨量模型。目前的大模型或许仅仅是开始,而智能算力必须为此做出准备。

在这五大趋势的倒逼下,智能算力产业将会迎来确定性的未来发展。首先算力需求将会持续爆发,产业发展势头与供应链挑战将会持续加大;其次智能算力的国产化进程将必然加快,全栈自主的智能算力将成为接下来的产业发展重点与战略支柱;此外,智能算力将融入到千行百业当中去创造价值,这也就为各个领域的智能算力解决方案与产业生态发展提供了动力。

《白皮书》为此在产业、技术、标准等方面提出了智能算力的发展建议。

比如说在产业方面,建议从国家战略层面制定规划,多举措推动智能算力健康有序发展。其中包括构筑统一智能算力服务中心与孵化平台、加强对相关产业资金支持、推动智能算力绿色发展等。

而在技术方面,应该加大对智能算力的技术研发,尤其是对重点技术的创新攻关。在标准方面,加快推动开放标准建设,将多元化算力转变为可调度的算力资源。

据IDC预测,中国智能算力规模将持续高速增长,预计到2026年中国智能算力规模将达到1271.4 EFLOPS,未来五年复合增长率达52.3%。可以说,智能算力正在中国迎来它的黄金发展期,相关各个技术领域、产业生态角色,都将迎来历史性的发展机遇。

智能算力的大江大河,需要我们去读懂、去面对、去探索。最终我们将行舟其上,给出关于智能算力与智能时代的中国答案。

免责声明:此文内容为第三方自媒体作者发布的观察或评论性文章,所有文字和图片版权归作者所有,且仅代表作者个人观点,与 无关。文章仅供读者参考,并请自行核实相关内容。投诉邮箱:editor@fromgeek.com。


企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2023-09-04
智能算力时代,一个中国答案
智能算力时代,一个中国答案

长按扫码 阅读全文

Baidu
map