透过ChatGPT的进化足迹,OpenAI传达了哪些信号?

古希腊神话中,一位名叫赫尔墨斯的神,会充当人神之间的信使,穿着带有双翼的飞鞋,行走在神明与人类之间。

根据《荷马史诗》的记载:“在天神中,赫尔墨斯是最喜欢引导凡人前行的。”这句话用来形容OpenAIAI的关系,虽不中亦不远矣。

上一周,OpenAI打造的ChatGPT出尽风头,成为国内外AI领域的头号热门话题。关于ChatGPT的对话能力,大家可能已经通过很多文章感受过了。简单总结,就是对答如流,无所不能,可替程序员写代码,可替商务人士出方案,还能替作家编故事。一度让久违的 “谷歌已死”“XX职业又要被AI取代了”之类的AI威胁论说辞,开始大量出现了。

关于ChatGPT的神奇之处,看多了也有点审美疲劳了,冷静下来思考一下:

为什么同样是AIGC,问答、对话这类NLP领域应用更容易引起轰动,激发人们对通用人工智能的希望?

为什么同样是预训练模型,相比BERT、GPT3等前辈,ChatGPT的对话能力产生了质的飞跃?

为什么同样是做AI,OpenAI要死磕NLP,从GPT1到 ChatGPT不断迭代?

OpenAI的CEO、联合创始人 Sam Altman曾说过一句话:“Trust the exponential,Flat looking backwards,vertical looking forwards”,相信指数的力量,平行地向后看,垂直地向前看。ChatGPT出现代表着,AI似乎已经站到了指数级飞跃的关键点上。但起飞的ChatGPT,并不是一蹴而就的。

从GPT到ChatGPT,恰好代表了OpenAI在大模型领域切实走过的历程,从中可以看到,OpenAI在AI大模型竞争中,已经探索出了一条属于自己的道路,就如同赫尔墨斯一样,成为引领AI技术前进的使者。

如果OpenAI是传递AI前沿进展的赫尔墨斯,ChatGPT就是那双带着双翼的金丝鞋。我们既要关注ChatGPT这双鞋究竟有多神奇,更有必要搞懂,OpenAI选择的这条大模型道路有何玄机。

今天,中国科技企业与研究机构都在积极投布局大模型,求术不如问道,我们不妨从GPT这一系列模型的演变历程,望向OpenAI关于AI与大模型的战略思考与发展脉络。

从GPT-1到ChatGPT,超神模型的演化足迹

OpenAI在博客中写道,ChatGPT 是从 GPT3.5 系列中的模型进行微调而诞生的。

正如名称中所暗示的那样,GPT- 3.5是OpenAI设计的一系列NLP模型中的第四个,此前还出现了GPT - 1、GPT - 2 和 GPT - 3。

在 GPT 出现之前,NLP 模型主要是基于针对特定任务的大量标注数据进行训练。这会导致一些限制:

大规模高质量的标注数据不易获得;

模型仅限于所接受的训练,泛化能力不足;

无法执行开箱即用的任务,限制了模型的落地应用。

为了克服这些问题,OpenAI走上了预训练大模型的道路。从GPT1到ChatGPT,就是一个预训练模型越来越大、效果越来越强的过程。当然,OpenAI的实现方式并不只是“大力出奇迹”那么简单。

第一代:从有监督到无监督GPT-1。2018年,OpenAI推出了第一代生成式预训练模型GPT-1,此前,NLP任务需要通过大规模数据集来进行有监督的学习,需要成本高昂的数据标注工作,GPT-1的关键特征是:半监督学习。先用无监督学习的预训练,在 8 个 GPU 上花费 了1 个月的时间,从大量未标注数据中增强AI系统的语言能力,获得大量知识,然后进行有监督的微调,与大型数据集集成来提高系统在NLP任务中的性能。

GPT-1的效果明显,只需要极少的微调,就可以增强NLP模型的能力,减少对资源和数据的需求。同时,GPT-1也存在明显的问题,一是数据局限性,GPT-1 是在互联网上的书籍和文本上训练的,对世界的认识不够完整和准确;二是泛化性依然不足,在一些任务上性能表现就会下降。

第二代:更大更高更强的GPT-2。2019年推出的GPT-2,与GPT-1并没有本质上的不同(注意这一点),架构相同,使用了更大的数据集WebText,大约有40 GB的文本数据、800万个文档,并为模型添加了更多参数(达到惊人的 15 亿个参数),来提高模型的准确性,可以说是加强版或臃肿版的GPT-1。

GPT-2的出现,进一步证明了无监督学习的价值,以及预训练模型在下游NLP任务中的广泛成功,已经开始达到图灵测试的要求,有研究表示,GPT-2生成的文本几乎与《纽约时报》的真实文章(83%)一样令人信服。

(GPT-2表现)

第三代:跨越式进步的GPT-3。2020年,GPT-3的这次迭代,出现了重大的飞跃,成为与GPT-2迥然不同的物种。

首先,GPT-3的体量空前庞大,拥有超过 1750 亿个参数,是GPT-2的 117 倍;其次,GPT-3不需要微调,它可以识别到数据中隐藏的含义,并运用此前训练获得的知识,来执行下游任务。这意味着,哪怕从来没有接触过的示例,GPT-3就能理解并提供不错的表现。因此,GPT-3也在商业应用上表现出了极高的稳定性和实用性,通过云上的 API访问来实现商业化。这种入得了实验室、下得了车间的能力,使得GPT-3成为2020年AI领域最惊艳的模型之一。

当然,GPT-3也并不完美。正如联合创始人 Sam Altman所说,GPT-3的水平仍处于早期阶段,有时候也会犯非常愚蠢的错误,我们距离真正的人工智能世界还有很长的距离。另外,GPT-3 API 的很多基础模型非常庞大,需要大量的专业知识和性能优异的机器,这使得中小企业或个人开发者使用起来比较困难。

第四代:基于理解而生成的ChatGPT。终于在2022年,OpenAI的预训练语言模型之路,又出现了颠覆式的迭代,产生了技术路线上的又一次方向性变化:基于人工标注数据+强化学习的推理和生成。

前面提到,一开始预训练模型的出现,是为了减少监督学习对高质量标注数据的依赖。而ChatGPT在GPT -3.5大规模语言模型的基础上,又开始依托大量人工标注数据(据说OpenAI找了40个博士来标数据),这怎么又走回监督学习的“老路”了呢?

原因是,GPT 3.5虽然很强,但无法理解人类指令的含义(比如写一段博文、改一段代码),无法判断输入,自然也就很难给出高质量的输出答案。所以OpenAI通过专业的标注人员(据说是40个博士)来写词条,给出相应指令/问题的高质量答案,在基于这些数据来调整GPT -3.5的参数,从而让GPT -3.5具备了理解人类指令的能力。

在人工标注训练数据的基础上,再使用强化学习来增强预训练模型的能力。强化学习,简单理解就是做对了奖励、做错了惩罚,不断根据系统的打分来更新参数,从而产生越来越高质量的回答。所以这几天很多人在互动中发现,ChatGPT会承认错误、会修改自己的答复,这正是因为它具备从人类的反馈中强化学习并重新思考的能力。

因为ChatGPT具备了理解能力,所以才被看作是通向通用人工智能AGI的路径。

当然,ChatGPT也并不是完美进化体。OpenAI的官网明确提示,ChatGPT“可能偶尔会生成不正确的信息”,并且“对2021年之后的世界和事件的了解有限”。一些比较难的知识,比如“红楼梦讲了什么”,ChatGPT会一本正经地胡说八道。

从GPT模型的演进和迭代中,可以看到OpenAI是不断朝着自然语言理解这一目标前进,用更大的模型、更先进的架构,最终为通用人工智能找到了一条路径。

从GPT-1到ChatGPT的纵向演变,会看到OpenAI对大模型的独特理解与技术脉络——通过模型预训练提升NLP指标,抵达强人工智能。NLP领域究竟特殊在哪里,值得OpenAI如此执着?

OpenAI的大模型差异化之路

前文中不难看出,OpenAI对于文本生成模型的执着,因为做够得久、投入够多,所以能够做得更好,是非常有长期战略定力的。

与之相比,和GPT-1同年推出的预训练模型,还有谷歌发布的BERT,但后者在火爆一段时间之后影响力明显减弱;而NLP问答领域一向由Meta引领,Meta AI 的 OPT 模型和GPT-3 达到了同等的参数量,但效果就不如OpenAI。同期选手中,OpenAI对于语言模型的用心显然是更多的。

一方面是资源投入,无论是越来越大的模型,需要消耗庞大的算力资源,ChatGPT所需要的高质量标注数据,依靠博士级别的专业人士来完成,比起将数据标注任务分发给众包平台,显然会消耗更多的人力和财力。

另一方面,是技术投入,大规模预训练、增强学习等技术都用在提升NLP对话系统在开放通用领域上的理解和推理能力。NLP是认知智能,要提升就必须解决知识依赖,而知识又是非常离散且难以表示的,要解决带标数据不足、常识知识不足等问题,是非常具有技术挑战的。多年前IBM的Frederick Jelinek就说过:“每当我开除一个语言学家,语音识别系统的性能就会改善一些。”颇有种“解决不了问题,就解决提出问题的人”的既视感。所以也可以说,OpenAI选择了一条更难走的路,去解决真正困难的问题。

此外,聚焦NLP领域也意味着OpenAI会承担隐形的机会成本。

今年AIGC(AI生成内容)在资本市场和应用市场都有很大的进展,与AI作画、音视频生成、AlphaFold2所解决的蛋白质结构预测等生成任务相比,NLP任务都是直接用词汇和符号来表达概念,此类模型通过“API+云服务”来完成商业化服务,无论是云资源的消耗量还是接口调用服务收费,所获得的收益也是远不及图像音视频或科学计算的。拿同样的精力做十个八个Dalle模型,肯定能赚得更多。

科技博主王咏刚在博客中分享了一个故事,称与OpenAI的两位联合创始人交流,发现这二人甚至不知道AIGC是什么意思!

说到这里,或许可以得出结论,OpenAI作为一个旨在“实现安全的通用人工智能(AGI)”的公司,就是在不计投入、不计商业回报,专心致志地通过过预训练大模型来提升NLP任务的各项指标,从而接近AGI的愿景。

为什么OpenAI能够走出这条引领潮流的大模型差异化之路呢?

一方面是NLP的特殊之处。

NLP 不是魔术,但是,其结果有时几乎就是魔术一般神奇。通用人工智能必须具备认知智能,这也是目前制约人工智能取得更大突破和更广泛应用的关键瓶颈,而NLP正是认知智能的核心。Geoffrey Hinton、Yann LeCun都曾说过类似的观点, 学习的下一个大的进展,应该是让神经网络真正理解文档的内容。

也就是说,当AI能理解自然语言了,AGI可能就实现了。

另外,OpenAI的运行模式也起到了关键的影响。

突破性创新早期需要大量的投入,大模型的开发需要大量的基础设施投入,而ChatGPT的对话系统短期内很难靠调用量的规模化来摊平研发成本。因此,OpenAI是一个非营利性研究机构,没有迫切的商业化压力,因此可以更专注于NLP领域的基础研究,这是商业型AI公司所很难实现的。

2011年,自然语言领域的泰斗肯尼斯·丘吉(Kenneth Church)发表了一篇长文《钟摆摆得太远》(A Pendulum Swung Too Far),其中提到:我们这一代学者赶上了经验主义的黄金时代,把唾手可得的低枝果实采摘下来,留给下一代的都是“难啃的硬骨头”。

学习是经验主义的一个新高峰,而这个领域的低枝果实也总有摘完的一天,近年来有大量AI科学家发出警告, 学习面临很多局限性,单纯用 学习很难解决一些复杂任务,或许不用太久,基础性突破就会成为AI产业的重要支撑。

GPT的演进也说明了,AI的突破需要循序渐进、从小到大地一步步实现,今天,每家AI企业和研究机构都在做大模型,相比CV计算机视觉、数字人、元宇宙等AI应用,NLP要显得暗淡很多。而如果一窝蜂去摘容易的果实,最终会制约AI深入产业的脚步。

ChatGPT的出现提醒我们,唯有啃下基础领域的硬骨头,才能真正为AI带来质变。

免责声明:此文内容为第三方自媒体作者发布的观察或评论性文章,所有文字和图片版权归作者所有,且仅代表作者个人观点,与 无关。文章仅供读者参考,并请自行核实相关内容。投诉邮箱:editor@fromgeek.com。


企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2022-12-14
透过ChatGPT的进化足迹,OpenAI传达了哪些信号?
古希腊神话中,一位名叫赫尔墨斯的神,会充当人神之间的信使,穿着带有双翼的飞鞋,行走在神明与人类之间。 根据《荷马史诗》的记载:“在...

长按扫码 阅读全文

Baidu
map