让我们来继续寻找那些AI不太好替代的人类“铁饭碗”。
医疗行业中,有一个岗位的AI化与自动化一直以来备受争议。正方认为分分钟被AI取代不用解释,反方却认为这是人类最稳的岗位之一,医生被取代了它都不会——那就是护士。
有心人肯定会发现,大约从2015年到现在,各种各样的智能护士、机器人护士、AI护士系统层出不穷。近到我们身边的医院,远到世界知名学府的实验室,各种与护士相关的AI技术不断出现。于是不断有媒体和专家发出声音,认为AI浪潮很可能对护士群体产生职业挤压效应。
与此同时,中国护士行业的实质状况,是近几年虽然注册护士人数不断增加,高学历护士比率不断扩大,但护士岗位的整体需求缺口却在不断加大。2010年,有研究报告提出全国护士缺口总额大体在120万人,而到了2017年,多种研究报告认为这个缺口已经增加到了300万以上。
换句话说,当务之急或许不是护士能不能被取代,而是能不能解决没有那么多护士的社会问题。
想要探究AI技术与护士岗位之间的关系,我们必须先认真了解一下“AI护士”到底能做什么。知道了AI的能力边界之后,才可以客观讨论人类与机器在这一行业中的共存状况。
大体来看,今天的AI护士可以分为两种:智能平台与机器人。
虚拟护士
我们知道,护士的工作是非常复杂的。而用AI技术来替代这些工作,也就自然而然出现了两种模式:一种是不会动的智能平台解决方案,我们这里姑且称之为“虚拟护士”;而会动的自然是“机器人护士”。这只是相对笼统的划分,因为“虚拟护士”也很多被制作成机器人型,方便患者与之交流,而且也常常被安装上并不复杂的移动装置。
我们可以举几个例子,来看看“虚拟护士”们是怎么工作的。
今天在一线城市的三甲医院中,已经可以看到一种“问答机器人”。它基于AI带来的语音交互技术,实现患者可以通过语音与之进行交流。其多被放置在问询台、挂号处等地方,用来回答患者问题,发放排队号码、挂号等等。比如去年年底,上海仁济医院投放了智能问询机器人“小i”。患者可以跟它聊天,咨询专家号、就诊时间、科室分布等问题。
这种AI技术并不复杂,国内BAT以及科大讯飞等公司都提供开源的技术接口,医院或供应商可以根据自己的需求进行开发。其价值在于能够24小时不休息回答患者问题,在实际医疗场景里其实是非常实用的。
这可以看做基础款虚拟护士,但确实可以大幅度降低咨询台、挂号处等工作所需要的人力。
而进一步作用于临床的则是病床看护系统。这类系统最早在英国产生,在日本发展非常迅猛,已经广泛应用。国内的科技公司也已经将类似方案引用到养老、医疗护理等场景。
其工作原理,基本上是利用语音交互+机器视觉摄像头,在病房陪伴患者。患者可以通过语音直接呼叫服务,比如询问时间天气、治疗情况,也可以通过系统呼叫人工服务。此外,系统还可以根据智能摄像头和传感器的观察,自动分辨一些状况,比如患者突然跌倒、患者需要换药等等,来通知护士站进行处理。
这类解决方案相对复杂,需要在病房建立一整套的传感与交互装置,但价值在于可以解决很多病人无人陪床以及夜班护士不够的情况,降低病患的突发情况处置不及时风险。
而在进一步发展中,病房看护AI也在向病房陪伴机器人、养老陪伴机器人方向过渡,从而可以完成被看护者更复杂的指令。
比这再复杂一点的,就是让AI直接参与到护士系统的运算与决策当中去,让AI护士直接升级为“AI护士长”。
这并非不可能实现。2016年,有媒体报道麻省理工计算机科学和AI实验室的一个研发小组日前正在研究一款可为医护人员提供建议,帮助护士系统在复杂情况下进行决策的机器人。
时至如今,这款名叫Ginger的AI系统已经在以色列等地的医院中实际投入使用。
Ginger虽然外形是款机器人,但主要承担的工作还是软件层面的。它的工作原理,是将医疗机构中的护士资源调配进行数据化,从而在任务调配中找到资源的最优配置。比如某个手术应该调配哪位护士;如何安排工作能够在医护工作者的工作与休息间达成平衡;如何分配床位等等。此外,Ginger还在不断添加更多AI能力,它就像一个护士系统的大脑,为医疗机构提供建议。
听起来还不错对不对?而在“虚拟护士”之外,一些造价更昂贵,但也更有效率的护士也在来的路上。那就是我们在无数科幻电影中见过的“机器人护士”。
机器人护士
由于护理本身是一个精细要求程度高、但偏于重复性的工作,所以很久以前就有人开始思考能不能用机器人来执行护理工作。
早在几年前,英国、日本等国家就开始在医院中引入机器人护士,当时的解决方案还相对简单,差不多相当于医用物流车。机器护士主要承担在医疗部门与病房间递送医疗器械、传递纸质文件的任务。
而AI技术的成熟,让机器人护士的能力得到了极大的延展。比如人类可以直接与这些机器人对话、机器护士可以通过机器视觉来识别外物,自主判断医患需求并提供服务;而且识别能力与数据智能化处理能力,还让机器人护士在精准度上得到了巨大的提升。很多由护士完成的精密工作也可以交给机器。
从几个案例中,我们可以大体理解机器人护士的工作性质。当然机器人护士的解决方案非常多,能力也千差万别,这里只是示例。
提起机器人护士,无法绕开对机器人疯狂痴迷的日本。虽然日本机器人的强项在于机械制造,但医护机器人领域已经越来越多见到AI的身影。
比如机器人护士界的颜值担当,著名的机器熊。这款日本理化学研究所与RSC合作研发的机器人护士。它的能力是“公主抱”或者搀扶病患,从而帮助病患洗澡或者坐上轮椅等等。在老龄化严重的日本,机器人护士正在得到高速发展,而机器熊的特质在于利用AI视觉+传感系统,它可以相对准确地判断病患替代、速度与空间关系等,从而变成一只足够温柔的熊,不会弄伤老人与儿童,同时也替代人类护士完成了这项最吃力的护理工作。
而在国内,更多机器人护士的工作还是集中在物流上。比如去年年底,协和医院引进了物流机器人“大白”,主要负责手术间所需要的物资配送。
根据数据的显示,一台机器人可以负责20个手术间所需要的医疗器械、药品与文件配送,跑一趟只需要不到两分钟。从效率上看,一台机器人相当4个人类配送员。最重要的是,通过数据标记的识别与智能运算,物流机器人基本可以实现零失误。这解决了一个十分重要的问题:手术室弄错东西很可能造成严重后果,但人类显然是无法保证永远不出差错的。
另一个机器人护士的主要能力,是配药与物资管理这类高精度和高重复性工作。从机器的角度看,这类工作的本质是物理识别与数据匹配,显然可以通过AI识别+高精度机器臂来解决。
这一类工作的更大价值,是让医院中很多高危工作可以用机器人来完成。
比如去年上海仁济医院,就在日间化疗中心引入了配药机器人。由于化疗中心的药物往往有毒副作用,因此配药是绝对的高危工作,尤其孕妇绝不敢尝试。而通过可以自主识别药物、并能判断药物多少的机器人来代替这一工作,放化疗类医疗部门的人力问题或许能得到极大缓解。并且相对来说,AI机器人的配药准确率也会高于人类护士,对于药品库存的把握与预测能力也更为精准。
不难看出,近两年随着AI的爆发,医疗场景中实用机器人技术的案例也在不断扩大。但是AI+机器人这样能够24小时保持高准确率的“新护士”,真的能够一举替代人类护士吗?
恐怕还有点难。
护士的工作性质,与AI的能力/成本边际
AI护士或者机器人护士,最大的挑战想必大伙都知道,那就是人类护士需要处理复杂的医患关系,需要依靠经验和观察来与病患沟通,承担着医疗机构与患者间的信息与情感交互。这些显然是AI护士无法完成的工作。
这也是很多专家判断人类护士会比人类医生更晚消失的依据——毕竟医生绝大多数工作是可量化和逻辑化的,临床护士却带有强烈的感性色彩。
而实际上,护士工作难以被取代的原因还不止如此。从上面那些案例就可以发现,护士的工作相当复杂,无论是医疗系统还是护理机器人,都只能设定相对单一的工作目标。再昂贵与高科技的机器人,也不可能取代一个初级护士的全面工作。
这样的现实情况,极大限制了AI护士的能力/成本边际:能力不全面与成本极高昂,迫使医疗机构还是会选择培养和聘用人类护士。
而从AI与人类的协作关系上看,护士领域人类实际负担的是一个极其复杂的工作集群。其中有一些可以被AI+机器人所替代,一些绝对不行,一些可以人机协作方式达成更好效率,还有一些可以替代却可能造成成本过高,效率降低。
因此上,AI护士在今天主要任务还是担任帮手,替代部分低智力密度和高强度岗位,而不是取代任何一个护士的综合工作。
此外,AI护士与医护机器人的成本问题,对于中小医疗机构来说依然是很大的负担。比如一个配药机器人成本要在几百万人民币,大医院可以依靠患者众多摊薄使用成本,中小医疗机构显然还是倾向将资源投入到核心医疗器械的采购当中。
而从AI医护这个行业发展上看,短时间出现具备综合能力、成本合理、适合大规模复制推广的AI护士解决方案,也还是不切实际的。
目前,医疗机器人的技术发展非常不平衡,缺乏统一的模块化系统与行业标准,各国技术优势与发展方案也不平均。这直接导致供应商往往只能提供某种解决方案,医疗机构也只能这边采购一点,那边采购一点,每次增强某个领域的智能化能力,无法实现大规模医护工作被AI所替代。
确切来说,AI在今天更像是给白衣天使们提供的新工具,只是有些是机器人形态,有些不是。比如智能穿戴设备、与病历关联的人脸识别系统,以及主动警报呼叫系统,都在从各方面提高着护士的工作质量与效率。
也就是说,从发展趋势上来看,今天的AI化首先是对护士行业极为有利的。比如应对护士工作中的职业危险,无论是配药机器人、患者智能识别系统,还是医患纠纷情况下的主动报警能力,都解决了突出的行业问题。
而接下来一步,是利用AI与机器人提供的综合护理能力,缓解严重的护士岗位缺口,让护士从业者能够从劳动密集型工作中解脱出来,专注于临床护理与病患沟通等复杂工作。
而在更远的将来,从严格意义上来说,护士岗位的整体数量被AI压缩,是一个大概率事件。但这需要非常漫长的过程,需要科技行业、医疗行业、社会系统的配合与协调。
路还远着呢。
免责声明:此文内容为第三方自媒体作者发布的观察或评论性文章,所有文字和图片版权归作者所有,且仅代表作者个人观点,与 无关。文章仅供读者参考,并请自行核实相关内容。投诉邮箱:editor@fromgeek.com。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。