> 厂商 >

没有“好的”数据,AI就没有未来?听听云测数据怎么说

没有“好的”数据,AI就没有未来?听听云测数据怎么说

算力、模型和数据构成了人工智能的三要素,过去,我们过多的把目光聚焦于算力和模型上,殊不知,随着人工智能的深入,好的算法和模型已不再是稀有物种,反而那些被标注好的优质数据成为时下最为稀缺的“黑金”。

“公司的壁垒不再是算法,而是数据。让算法利用足够的数据,使得产品运行起来。”人工智能和机器学习领域国际的权威学者吴恩达在发表以“AI is the new electricity”为主题的演讲时,就重点强调了数据的重要性。无独有偶,李开复在清华大学“清华学堂计算机科学实验班”题为《人工智能的黄金时代》的演讲中也讲到了此类观点,“如果你有垄断性的大数据,你就会有很大的优势。”

以上种种,都表明着一件事,即AI的崛起离不开“好的”数据作为地基,这也是云测数据成立的初衷所在。

溯源云测数据的AI数据服务之路

“自2011年切入企服市场以来,Testin云测不断致力于助力产业智能化,除了测试业务我们已经成为专业领域的垄断品牌,专注于AI数据服务的云测数据也成为数据领域的标杆品牌。目前我们整个数据服务团队规模已超过1000人,通过标审分离的流程化作业模式和数据安全机制,更好的保证数据的高质量产出和数据隐私性,从而更好地为人工智能落地提供定制化‘数据养料’。”在接受钛媒体专访时,云测数据总经理贾宇航如是说。

AI数据服务作为一个非标领域,往往需要根据不同行业领域、不同的需求进行特定化的场景定制,而数据标注的过程,规范化、标准化以及可机读性又不可或缺,这就意味着云测数据所从事的领域,并没有捷径可以走。

早期的数据标注服务门槛并不高,几个人、几台电脑便可展开操作,导致了行业鱼龙混杂、同质化竞争等现象,而这时的人工智能也处在初期发展阶段。但当人工智能驶入深水区,“应用人智能”声势逐渐火热,相对应的算法对数据的精准程度和质量要求也水涨船高,就要求着作为AI数据服务的提供者,要为人工智能提供定制化的、还原应用场景的优质数据。

针对于此,贾宇航告诉钛媒体,“以人脸关键点识别为例,早先的相关数据标注往往用一句话便可描述完它的任务需求,到了现在,已经发展到几百个关键点。通常数量级的人脸数据标注任务,有时候4张A4纸都未必能写完这些需求,而人脸的数据标注只是众多领域的任务需求之一。”

庞大数据标注任务量级之下,是当下业内需求端对精准和高质数据的普遍共识。

这就要求着数据服务要在数据标注和采集上下足功夫,而小团队的能力范围则显得捉襟见肘。回归到数据标注面向多领域这件事的本质时,你又会发现,光靠人多或者说采用“众包”模式往往只能解决量的需求,数据标注人员是否能统一化协同管理以及是否具备相关领域知识,才是决定某项数据任务完成质量的好坏。

同时,这也是云测数据当下正专注的事情。正如医生可以标注得好ct诊疗片,而云测数据团队在进行自动驾驶车外环境数据标注时发现,那些能够快速、精准进行数据标注的人员往往拥有驾驶经验。

云测数据快速成长的秘诀是什么?

至此,我们还需要思考一个问题,为什么云测数据能做到且做好AI数据服务?

通过观察Testin云测的发展历史,我们便能找到答案。

自2011年Testin云测成立到现在,已经为全球超过百万的企业及开发者提供服务,积累了丰富且完善的技术能力和流程化管理能力。而云测数据AI数据服务正式开展于2017年,换句换说,Testin云测的数据业务线从一出生便拥有7年企业服务所积攒的经验,并继承了行业独立第三方的角色,天然的“以客户为中心”的企服基因是云测数据区别于同行的最大护城河,而客户最为关键的诉求则是“降本增效”。

“与企业服务在美国环境更侧重标准不同的是,中国更重服务,通过这么多年的观察我们发现,是否能切实满足用户的真实需求,其实是一个非常重要的点,并不是说企业一定要做出一个平台或者一个工具,更多是从企业或行业需求出发,构建对应的服务模式。”贾宇航对钛媒体补充到。

以新零售门店巡检为例,通常来说,每个门店每月都要巡检一次,门店巡检模式是让一个人拿着调研表去盘点,随着人工成本的增加,而门店数越来越多现实情况,已经让这成为一笔不小的开销。通过引入AI数据服务,现在工作人员可以拿一个手机APP直接巡检,物品的数量、sku的数量以及对应的sq数量,都能一目了然。

“从不同客户反馈得知,通过我们云测数据的数据标注服务而落地AI产品的企业,可为企业减少大概1/3的人工成本。”贾宇航如是说。

门店巡检只是案例之一,就目前来说,云测数据主要关注智能驾驶、智慧城市、智慧金融和智能家居几大方向,这也是当下市场需求最大的几个领域。面对不同的数据领域,云测数据通过流水化作业,将各个环节打造成不同模块,并配合自己的流程管理工具,优化人员管理、数据采集、数据清洗和数据标注的各个环节流程,确保内部的持续高效能运转,最终保证AI数据高质产出。

根据IDC调查显示,目前中国大数据发展处于应用落地阶段,整个市场预计未来五年将保持持续增长的趋势,年复合增长率将达到17.3%。而得益于人工智能、5G、区块链、边缘计算的发展,未来多方技术融合,数据增长必然呈现井喷态势,数据采集和标准业务作为其伴生体,必然有较大的增长空间。

得益于对AI趋势的判断,Testin云测认为,“人工智能正在逐渐往应用人工智能”方向发展,因而云测数据在成立之初,就确定了定制化“精准高质、独立安全”业务方针。本着这张“王牌”,云测数据部门迅速扩充,在以往企业服务经验的完美嫁接之下,最终让云测数据成为AI数据服务领域的头部企业。”

“云测数据业务规模量每年都在以倍数的规模增长,这也与我们所处赛道的市场 息息相关,在我看来,整个市场仍然呈现非线性的几何增长态势,还有很多机会蕴含其中,有待挖掘。”谈及云测数据业务线发展状态时,贾宇航如是说。

“安全”是AI数据服务提供商绕不开的命题

机会之下,企业端在提供优质数据的同时,也要注意数据服务过程中的规范和安全。

在这方面,云测数据通过自建数据采集实验室和自建数据标注基地的方式,规范管理专职数据服务团队。这种措施除了保证标注数据的质量和效率,也最大限度地保证了数据产出的安全隐私性。

贾宇航对钛媒体强调到,云测数据自伊始便将数据安全放在首位,集中表现在以下几个方面:

第一,不滥用数据,数据交付后清毁数据不留底,绝不二次使用;第二,不侵犯隐私,与所有数据采集的用户都签订数据授权协议,确保AI企业用于训练的数据合法合规;第三,建立相关的数据保障机制,如从防火墙的设置、内部信息系统的管护、乃至标准化的流程作业体系等。

正如Testin云测CMO张鹏飞多次强调:“即便说云测数据从安全到隐私防护这套体系会加重运营成本,但从我们行业大局发展来看,只有以这种负责的态度来执行工作,我们的行业才能‘良币驱除劣币’。”


企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2019-12-13
没有“好的”数据,AI就没有未来?听听云测数据怎么说
算力、模型和数据构成了人工智能的三要素,过去,我们过多的把目光聚焦于算力和模型上,殊不知,随着人工智能的深入,好的算法和模型已不再是稀有物种,反而那些被标注好的

长按扫码 阅读全文

Baidu
map