大多数人对Uber在人工智能领域的认知可能都来自于自动驾驶,但实际上Uber在人工智能底层技术上也有卓越的贡献,其开源的分布式 学习框架Horovod是世界上最优秀的人工智能训练加速框架之一,数以万计的人工智能开发者和组织从中受益。8月28日,在北京举行的2019人工智能计算大会(AICC2019)上,Uber 学习平台经理宁旭将在大会主论坛上分享如何更好的使用Horovod加速AI模型训练。
Horovod流行的背后是AI算力需求的急剧增加
Horovod实质上是Uber开发并开源的一套先进的分布式系统,它并不依赖于某个框架,而是采用目前业界广泛认可的基于环形All-reduce通信的同步SGD算法,通过计算与通信异步、梯度合并、梯度压缩等设备间通信优化手段,完成allreduce、allgather等集体操作通信工作。这一特性使得Horovod可以非常方便地与主流 学习框架TensorFlow、PyTorch、 MXNet等进行匹配,在大规模GPU集群上的训练性能远高于原生框架的训练性能,提供非常高效的分布式训练性能加速。Horovod的另一大优点在于其提供的接口极为简单,用户只需修改几行代码,就可实现显著的训练性能提升。
Horovod之所以受到越来越多AI开发者与研究机构的青睐,其背后的原因在于越来越多的机器学习模型对数据和计算能力需求急剧增加。在大部分情况下,AI模型可以在单个或多GPU平台的服务器上运行,但随着数据集的增大和训练时间的增长,有时训练需要一周甚至更长时间。因此,AI开发者们不得不寻求分布式训练方法来缩短模型训练的时间。
Uber分享Horovod的“独家秘笈”
Uber目前已经将 学习应用到了很多公司业务中,从自动驾驶搜索路线到防御欺诈等。Uber 学习平台经理宁旭认为,训练现代复杂的 学习模型需要大量的计算。将计算扩展到多个GPU面临两大挑战:低成本、高效的GPU间通信库,以及用户代码可能会出现较大的更改。而Horovod成功地解决了这两大难题。
在AICC2019上,宁旭将带来《利用Horovod进行分布式 学习》的主题演讲,不仅将现场分享如何通过Horovod在TensorFlow、Keras、PyTorch和MXNet中实现更快、更轻松的分布式训练,讲解Horovod的操作方法,同时也将披露Uber最近在橡树岭国家实验室进行的一项案例研究,讲述Horovod在世界上最快的超级计算机上实现百亿亿级计算。
宁旭曾带领Uber大数据和基础设施领域的团队负责一些开源项目,在机器学习、 学习、大数据和大规模计算、网络、存储问题方面有丰富的经验。在加入Uber之前,宁旭曾在Facebook、Akamai和Microsoft以及几家初创公司工作。
AICC2019精彩纷呈
本届AICC 2019可谓精彩纷呈,核心板块为主论坛与自动驾驶、产业AI创新、AI计算与基准测试、AI+视觉计算、AI+创投五大主题论坛,其中主论坛嘉宾云集了来自中国工程院、英国皇家工程院、百度、中国新一代人工智能发展战略研究院、浪潮、Facebook等机构的AI产学研顶尖专家学者,共聚一堂解读AI产业趋势,分享前沿AI计算技术。大会同期举行的AI千人训练营将邀请百度、平安科技、浪潮的资深AI工程师讲解最新AI计算技术与应用,帮助学员从零入门AI。
AICC 2019主论坛嘉宾阵容
与此同时,AICC2019大会期间还将重磅发布《2019-2020中国AI计算力发展报告》,公布中国AI计算力城市榜单与热力分布等重要研究成果,为AI投资、创业与就业提供科学指导。
AICC大会由中国工程院信息与电子工程学部主办,浪潮集团承办,旨在围绕人工智能的产业需求研讨AI计算,促进AI技术创新、合作发展与人才培养。目前,AICC大会已成为AI计算领域最具分量的前沿技术交流平台,每年都会吸引数千名AI产业与技术领袖、顶级AI专家和AI开发者等参与。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。