如何实施机器学习?
实施机器学习是人工智能驱动的产品和服务取得成功的关键一步。
让我们讨论一下MLOps如何帮助企业高效解决问题。
实施机器学习,即现在所称的“MLOps”,是许多行业的最新趋势。然而,许多企业在这个过程中遇到了困难。运营是企业每天都在做的事情;其经营自己的工厂、办公室、商店等等。但“实施机器学习”是什么意思呢?以下是在业务中利用MLO的一些方法。
定义业务问题
首先,需要定义业务问题。想要解决的关键问题是什么,需要有一个特定的目标,例如增加销售额或降低客户流失率;或者有一个特定的用例,例如向购物应用添加图像识别。业务问题将指导使用MLOps。
收集正确的数据
其次,需要收集正确的数据。使用的数据会影响模型的质量。如果数据不正确,模型就会不正确。确保使用的数据准确性,并反映所需的用例。例如,如果想要对结帐率进行建模,则应使用反映结帐率的数据,例如订单和商品信息。如果想对客户购买的商品进行建模,应该使用产品和订单信息。如果要对客户情绪建模,应该使用与客户情绪相关的数据,例如评论数据。
构建可靠且可扩展的MLOPS平台
再者,需要构建一个可靠且可扩展的MLOps平台。构建这样的平台对于实施机器学习项目至关重要。可扩展的平台将能够处理比当前处理能力更多的数据,并构建和扩展更多的模型。反过来,这将能够利用MLOps。这可以通过使用基于云的托管机器学习平台来做到这一点。这些平台清理、组织和标准化数据,通过消除大量手动工作,使构建和实施人工智能项目变得更加容易。
决定构建正确的机器学习产品/服务
最后,需要决定构建正确的ML产品/服务。这将基于试图解决的业务问题。例如,如果想要预测结帐率,可能需要使用推荐引擎解决方案;或者如果想要预测某些产品的需求,可能需要使用预测解决方案。一旦决定构建正确的产品或服务,就需要实施该解决方案。可以使用之前选择的托管的基于云的机器学习平台来完成此操作,这将更轻松构建、训练和部署模型,从而节省时间和精力。
一旦成功地将MLOps用于业务,便可开始使用其来解决实际业务问题,并使AI项目更加成功和可持续。
相关推荐:
人工智能和机器学习如何改变建筑行业人工智能和机器学习对初创企业的影响人工智能和机器学习将如何改变数据中心?人工智能、机器学习和算法对设施与资产管理的影响- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 华为刘康:拥抱AI时代,加速迈向全面智能化运维运营
- 苹果强化手机直连卫星布局:15亿美元加码投资Globalstar
- GTI 5G-A×AI融通发展项目 “智网慧城”计划全球招募正式启动
- 华为提出“四新”战略,助力运营商实现数智时代商业成功
- 华为王雷:星河AI网络全面商用,加速运营商新增长
- 华为提出构建以AI为中心的F5G-A全光网,助力运营商新增长
- 华为汪涛:AI加速超宽带产业创新,共赢商业新增长
- 移远通信:国内业务持续复苏 利润逐步修复
- 韩国《量子科技和量子产业促进法》正式生效
- 中国移动启动5G专网 定制产品短名单第一次增补采购:总预算13.5亿元
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。