中国电信韦乐平:光通信发展的新趋势思考

10月11日消息(水易)近日,在“中国电信战新共链行动大会暨第三届科技节”之“面向云网融合的下一代光网络新技术论坛”上,中国电信集团科技委主任韦乐平发表主题演讲。

围绕T比特时代正在开启,IP层和光层融合技术的发展趋势,下一代新型光纤的发展与思考,光接入和驻地网技术的最新发展趋势,光器件的创新是关键,ChatGPT开创人工智能新时代,系统阐述了光通信发展的新趋势思考。

T比特时代正在开启

韦乐平表示,T比特DSP的商用实现了群体性突破,T比特光模块商用化可期,T比特级传输系统现场实验逐步开展,标志着T比特时代正在到来。

DSP方面,Acacia、NEL、Nokia、Infinera、Marvell的1.2Tbps DSP,预计2023年-2024年均可商用,Ciena的1.6Tbps DSP预计2024年可商用。光模块方面,Terabit BiDi MSA联盟同时发布基于100G通道和OM4多模光纤的800G和1.6T的数通产品,Coherent、旭创等发布了相关产品。传输网方面,国内外均有运营商开展了现网试验。

相干光通信的在网位置和适用速率一路下沉,占据80公里/100G速率以上的所有应用场景;主导40公里/400G速率,10公里/800G速率,2公里/1.6T速率场景;低功率相干光已迈向10公里/100G速率和40公里/100G速率场景。

相干光通信的技术进展包括DSP突破,集成化进展,低成本措施,新材料出现(如薄膜铌酸锂),封装架构创新(如光电共封)等。

目前,相干光通信已经成功应用于海缆、长途网、城域网、DCI,正渗透网络边缘、汇聚、5G回传、企事业网,试图突破5G前传、DCN、VHSP。

对于干线400G的主流方案,传输距离比容量更重要,因此QPSK(C6T)、QPSK(C6T+L6T)更适用干线网,对于16QAM-PS(C6T+L6T)更适用于区域网。

对于基于QPSK的80波400G干线系统的技术进展,400G相干光模块方面,分立C6T和L6T激光器可用;低噪声光纤放大器,分立C6T和L6T可用,长波长NF需改进;波长交换WSS,分立C6T和L6T均可用,C6T+L6T集成2024年可用;光系统,解决SRS,维系波道功率动态均衡,基本可行。

商用进展方面,韦乐平介绍,中国电信目前干线最大链路截面容量121T,用400G扩容可以节约15%—20%的宝贵光纤资源和大量转发器,100G资源2026年起逐步达到使用寿命。目前来看,2024年将实现试商用和商用,2025年实现规模商用,2026年大规模商用。

IP层和光层物理融合突破障碍

韦乐平介绍,IP层和光层融合的好处在于,消除了大量背靠背灰光和独立转发器,降低了功耗、尺寸、成本。统一了IP层和光层的管控和监视,实现了光层开放。具备了跨层全局视野,可望更有效地利用两层资源,规避无效恢复和冲突。简化了网络架构,易于维护,更快适应外部变化。

IP层和光层物理融合的障碍在于,目前路由器和光线路系统的对接靠后者的大量独立光转发器实现,随着速率的持续提高,这种分离方式的成本也越来越高。十几年前的集成努力由于DSP和光模块尺寸太大,导致牺牲路由器面板的端口容量,得不偿失,运营商不得不继续沿用分离的老办法。

随着硅、硅光和DSP技术的进展,目前能将DSP和硅光模块嵌入路由器标准端口(OSFP-DD),形成适用路由器和光线路系统的400G通用DCO光模块,实现尺寸、功耗、性能、成本和互操作突破。适用于多种网络边缘接入技术(企业应用、5G回传和中传、OLT、CMTS等)的低成本100ZR通用光模块(QSFP28)也即将推出。

韦乐平表示,目前IP层和光层融合技术主要应用于城域网,干线场景还有待突破。目前的主要挑战是多厂家环境跨层控制的标准化、互操作、利益格局的影响。另外,运营商面临自主开发私有管控规范的自研能力、时效、运维的挑战。

G.654E将是未来干线主用光纤

韦乐平表示,G.654E光纤将成为未来干线网的主用光纤。测试数据表明,对于速率将升级为400G的干线,G.654光纤可望提升距离60%—80%。

对于单纤空分复用,多芯光纤在兼容现有125μm包层前提下,仅能容纳3-4芯,扩容3-4倍,但包括制造工艺、检测、维护等产业链几乎需要重新设计和产业化。少模光纤靠大芯径容纳3—5个低阶模,制造容易,但面临高阶模高衰减、长距离传输模式耦合干扰以及复用/去复用器挑战。

另外,高密度大芯数光缆(多轨系统,一缆多纤)最简单易行,扩容潜力最大,但需要集成化系统的配合。

值得一提的是,韦乐平还看好空心光纤(HCF)。空芯光纤HCF)绝大部分信号功率走空气通道,时延低33%;非线性至少低3-4倍,入纤功率高,传输距离长,容量大,可望突破非线性香农容量极限。

同时,空心光纤潜在光纤损耗可望低于0.1dB/km、谱宽大(约40THz窗口,远大于常规光纤)、模场直径大(约20μm,高达40μm时仍无明显弯曲损耗增加)。

不过空芯光纤也面临着多项成本、多项标准化、仍涉及产业链重新设计和产业化等挑战。

对于空心光纤的应用场景,韦乐平介绍在特定低时延应用(超算、DCI、海缆等场景),以及非通信应用(传感、高功率传递、特殊光源)等都有广阔的应用空间。

FTTR-H目标1亿中高端家庭

光接入和驻地网的新发展趋势方面,接入带宽持续提升,目前全国宽带端口11.18亿,光宽占96.3%,千兆端口数达2144万,下一步50G PON,短期用于政企客户2B应用,长远冲击100G/200G PON。

在政策支持,竞争驱动,以及技术和生态基本成熟的驱动下,FTTR发展迅猛。韦乐平表示,初期将聚焦FTTR-H,也就是家庭场景,预计今年FTTR-H的用户超过1000万,长远目标是1亿中高端家庭,约500亿元市场规模。

目前FTTR还存在一些挑战,FTTR-H方面主从设备希望解耦,新业务应用不足;FTTR-B还有待培育。

网络的未来寄希望于光芯片创新

目前,全球运营商都面临着量收剪刀差的局面。韦乐平指出,降低量收剪刀差的关键是大幅降低网络成本,光通信成为降价最慢的领域,其中光器件是瓶颈的瓶颈,光芯片更是瓶颈的立方。原因在于,摩尔定律不适用以手工为主的光通信技术。

传输系统方面,一个80波400G QPSK码型的C6T+L6T波段的光传输系统,光器件成本大约占81%(含oDSP),800G和1.6T只会更高。

核心路由器方面,400G核心路由器,光器件成本占15%,随着容量提升,背板芯片互连、板卡互连都将光化,光域分量将继续增加。

光接入方面,随着技术进步和大规模集采,10G PON光模块成本占比下降至35%。未来50G PON、WDM-PON光模块成本占比会更高。

交换机方面,数据中心交换机的光模块成本增速很快,在400Gb/s速率,交换机的光模块成本已经超过交换机本身,高达50%。

光系统对于光器件的总体要求是:高速率、高集成、低功耗、低成本。韦乐平认为,光子集成(PIC)是主要突破方向,其中磷化铟(InP)是唯一的大规模单片集成技术,硅光(SiP)是最具潜力的突破方向,可以将电域的CMOS的投资、设施、经验和技术用在光域。

另外,基于硅光的光电共封(CPO)是进一步降低功耗、提升能效、提高速率,适应AI大模型算力基础设施发展的关键器件之一。

韦乐平总结道,网络的未来寄希望于光器件,特别是光芯片的技术创新。

ChatGPT近中期主要影响DCN

今年人工智能领域最火热的话题就是ChatGPT。这一类AIGC大模型训练可能需要在DC内为每个训练POD单独构建高速数据交换网平面。

目前来看主要的技术要求包括高带宽和低延迟/零丢包。高带宽方面,服务器内GPU间总线带宽达T比特级,服务器对外仅能提供200G×8的接入能力,是AI集群性能的瓶颈;服务器间组网,国外多采用IB,性能好,但技术封闭,国内倾向用无损以太网RoCE。

低延迟/零丢包方面,IB时延仅1us,而无损以太网RoCE在5到10us水平,尚需努力。此外,丢包对传输效率影响很大,需要近零丢包性能。

韦乐平表示,随着多模态视频到来,带宽将有数量级增长,届时对DCN和DCI的影响需重估,甚至跨群跨云的并行训练必将到来。

在韦乐平看来,近中期ChatGPT主要影响DCN,对DCI和电信网的影响不大,中长期光交换将是解决集群和跨群跨云训练性能和功耗的归宿。

另外在数据中心领域有两个讨论比较多创新技术,包括光电共封装CPO和线性直驱LPO,目前的争论也很多。

CPO技术的驱动力是随着传输速率提升,信号在铜箔电路板的传输损耗快速增加,唯有去掉铜线,才能维系速率的持续提升和功耗的大幅降低。不过,目前技术尚不成熟,良率不高,维护不方便,标准滞后,实际将复杂性转移至交换芯片,但其潜力大,最适合200Gb/s SerDes速率以上应用场景,是实现未来高速、高密度、低功耗光互连场景的中长期解决方案。

LPO的驱动力在于去掉光模块DSP芯片(大约占400G光模块的一半)可大幅降低功耗,将DSP功能集成到电交换芯片中,依然保持可热插拔模块的形态。可以在继续利用成熟光模块供应链前提下实现低功耗、低时延目的,但面临更高速率、更长距离传输的巨大挑战,当前的100Gb/s SerDes速率应用是近中期方案。


企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2023-10-11
中国电信韦乐平:光通信发展的新趋势思考
中国电信韦乐平:光通信发展的新趋势思考,C114讯 10月11日消息(水易)近日,在中国电信战新共链行动大会暨第三届科技节之面向云网融合的下

长按扫码 阅读全文

Baidu
map