研究人员使用人工智能预测电力需求|观察

在过去的几十年里,对于供应商和电网管理者来说,寻找更准确的方法来预测能源消耗一直是一项毫无结果的活动,因为大多数电网仍然依赖于主要参考消费历史和天气预报的预测模型。

公路和铁路交通数据与活动密切相关,通过这个网格管理人员可以更好地了解城市或城镇的哪些地区需要电力,哪些地区需要较少的电力。在测试中,将人工智能模型与传统的能源消耗预测模型相结合,可以在能源消耗发生前两到六个小时做出准确的预测。

实时模型还能够在危机时期提供准确性,例如在自然灾害之后或发生另一场大流行病时。如果行为发生变化,交通和铁路数据将能够迅速识别,并将能量转移到城市的不同区域。

随着电动汽车数量的增长,交通和电力需求之间的联系将变得更加紧密。这意味着交通数据在预测用电量方面可能变得更加重要。

由于风能和太阳能大量涌入国家电网,能源供应的波动变得更加明显,因此对消耗量进行最准确的预测,对于电网运营商避免电力不足或停电至关重要。再加上对能源日益增长的需求,过去的预测模型可能无法保持高水平的准确性。

在确定人工智能模型是否可以补充传统模型的后续测试中,研究人员发现,它只会略微提高准确性。目前,人工智能似乎可以嵌入到其他模型中,以提供更高的准确性。

相关推荐

预测性维护与预防性维护的区别

物联网是人工智能进化的支点|观点

绿色能源革命:太阳能和风能如何改变电力行业


企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2023-06-06
研究人员使用人工智能预测电力需求|观察
随着电动汽车数量的增长,交通和电力需求之间的联系将变得更加紧密。这意味着交通数据在预测用电量方面可能变得更加重要。

长按扫码 阅读全文

Baidu
map