机器学习是人工智能的一个分支,具有最大的未来潜力并为行业带来最大的利益。据相关报告显示,到2025年,机器学习市场规模将达到967亿美元。与2018年的68亿美元相比,这将是一个巨大的增长。在未来几年,越来越多的公司将选择机器学习技术来改善他们的业务。
工业4.0中的机器学习十年前,工业4.0这个术语被创造出来,指的是工业部门的数字化过程。从那时起,我们看到该领域中越来越多的公司致力于实施先进技术,如物联网、区块链和人工智能的所有分支:机器学习、 学习、认知智能等。机器学习等技术在行业中的应用有助于提高生产率、制造效率,并允许更快、更灵活和更高效的流程。在这个方向上,欧盟正迈着坚定的步伐向前迈进。2020年2月,欧盟委员会发布了《人工智能白皮书》。正如欧盟主席所说,所有欧盟国家的联合战略旨在未来十年每年吸引超过200亿欧元投资人工智能。这一数字预计将通过私营部门的贡献和国家的共同融资来实现。公共投资将推动工业4.0和电子行业的技术进步、云计算技术的发展和智能工厂的实施。来自不同行业的企业将能够受益于机器学习等技术在行业中的应用优势,但最重要的是,他们将是该技术的四个战略领域的一部分,也就是陶瓷、汽车、安装和能源管理和食品。将从机器学习中获益最多的工业部门陶瓷、汽车、能源管理以及食品和饮料市场的公司已经受益于通过机器学习算法实现人工智能的优势。他们正在实施一种技术,使他们能够预测糟糕和错误的行为,优化生产流程,深入分析市场或需求,以便更好地了解它,从而更精确地适应客户的需求。所有这些都是通过机器学习的不同应用实现的。陶瓷领域在陶瓷领域,人工智能开始发挥主导作用。机器学习算法已经被使用,尤其是在质量控制过程中。通过各种算法,可以预测材料在极端温度条件下的行为,并检测瓷砖中的异常和缺陷。在人工智能的帮助下进行的研究试图预测材料在制造过程中的异常行为,从而有可能控制和使用比目前制造的更符合阻力条件的组件。另一方面,通过识别不正确的模式,他们能够尽早发现产品中的异常情况,减少浪费材料情况,增加盈利能力。如今,我们已经发现一些公司正在使用这项技术,并将其用于这一行业或其他领域。首先,它们是陶瓷、瓷器和地板行业的公司。汽车领域在汽车领域,人工智能也越来越多地被用于改善工业流程。汽车和所有相关行业都在使用机器学习来增加他们的营业额。该行业正在使用这种技术进行组件耐久性的预测分析,并在早期识别异常和缺陷。机器学习在汽车行业的另一个应用是供应链的优化。这是改善汽车行业公司生产流程的绝佳机会。在这个意义上,它们除其他职能外,更好地控制不同设施所需的库存水平。越来越多的汽车企业正在利用机器学习的优势来改善他们的生产过程。安装及能源管理在安装和能源管理领域,人工智能通过机器学习推动了巨大的进步。这种技术的引入在这个领域正在发展智能网络或智能电网。该类型的网络将利用机器学习技术进行实时分析,通过识别消费模式来更好地调整电力供应以满足需求,并拦截可能发生在整个供应链中的任何故障或欺诈。能源管理方面的其他进展将涉及改进网络的管理和优化、上门服务、价格优化、按地区预测增长、发现消费和需求高峰或某些客户或城市的行为。AI技术在城市能源管理中的应用,给个人和企业带来了不同的优势。据一项研究显示,到2022年,智能电网将为市民节省约140亿美元的能源成本。该行业的许多公司已经获得了这些好处,通过使用先进的机器学习平台改善城市的能源管理。食品领域在食品领域,通过机器学习算法的人工智能有助于降低成本和提高质量。它在食品和饮料行业以及餐饮行业等所有领域都这样做。这使得该行业获得许多关键优势以改善其业务。这些优势之一是分析食品市场,以了解消费趋势,从而适应客户的真正需求。
机器学习的另一个应用与改善生产工厂的卫生有关。它可以用来检测机器是否脏污,是否需要清洗,或监控和检查所有参与生产链的工人的卫生。机器学习也被用于工业中优化食品和饮料供应链。如今,食品行业的许多企业都受益于人工智能,更确切地说,受益于机器学习。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 智能家居技术:使公寓生活更简单还是更复杂?
- 中电信数智中大单遭到围殴 扛过所有投诉笑到最后
- 人工智能与云技术在数据管理中的应用
- ISO27001合规性:数据中心运营商和客户需要知道什么
- 告别“看电视难”微型机顶盒和通用遥控器2025年将开展规模部署
- 工信部:开展万兆光网试点工作;英伟达发布全新的RTX 50系列显卡,5090售价1999美元起——2025年01月08日
- 工信部开展万兆光网试点:聚焦小区、工厂、园区三大场景
- 中国移动极简0TN设备集采:规模为124端
- 中国移动光分路器产品集采:通鼎、中天等8家厂商中标
- 中国移动骨干网DNS系统十四期工程采购:牙木和亚信中标
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。