北京时间3月28日消息(余予)近年来,人工智能已经无变得处不在,其应用包括语音解释、图像识别、医学诊断等等。与此同时,量子技术已被证明具有远超世界上最大超级计算机的计算能力。近日,维也纳大学的物理学家展示了一种被称为量子记忆电阻器的新设备,它可以将这两个世界结合起来,从而解锁前所未有的能力。该实验是维也纳大学与意大利国家研究委员会(CNR)和米兰理工大学合作进行的,在一个基于单光子的集成量子处理器上实现。该成果于近日在最新一期《自然光子学》杂志上发表。
图源:Equinox Graphics,维也纳大学
所有人工智能应用的核心是被称为神经网络的数学模型。这些模型的灵感来自人类大脑的生物结构,由相互连接的节点组成。就像我们的大脑通过不断地重新安排神经元之间的连接来学习一样,神经网络可以通过调整其内部结构来进行数学训练,直到它们能够完成人类级别的任务:识别我们的脸,解释医学图像以进行诊断,甚至驾驶我们的汽车。因此,具有能够快速有效地执行神经网络中涉及的计算的集成设备已经成为学术界和工业界的主要研究焦点。
该领域的重大变革之一是2008年记忆电阻器的发现。该设备根据过去电流的记忆改变其电阻,因此命名为记忆电阻器或忆阻器。在它被发现后,科学家立即意识到(在许多其他应用中)忆阻器的特殊行为与神经突触惊人地相似。因此,忆阻器已经成为神经形态架构的基本组成部分。
一组来自维也纳大学、国家研究委员会 (CNR) 和Philip Walther教授和Roberto Osellame博士领导的米兰理工大学的实验物理学家们现在已经证明,设计一种与忆阻器具有相同功能的设备是可能的,同时当其作用于量子态是,能够编码和传输量子信息。换句话说,就是一个量子忆阻器。实现这样的设备是具有挑战性的,因为忆阻器的动力学往往与典型的量子行为相矛盾。
图源:Equinox Graphics,维也纳大学
通过使用单光子,即光的单量子粒子,并利用它们在两条或更多路径的叠加中同时传播的独特能力,物理学家们克服了这一挑战。在他们的实验中,单光子沿着激光写入玻璃基板上的波导传播,并在多条路径的叠加上被引导。其中一条路径用于测量通过设备的光子通量,该数量通过复杂的电子反馈方案,调节另一个输出的传输,从而实现理想的忆阻行为。除了演示量子忆阻器外,研究人员还提供了模拟,表明具有量子忆阻器的光网络可用于学习经典任务和量子任务,这暗示了量子忆阻器可能是人工智能和量子计算之间缺失的一环。
“在人工智能中释放量子资源的全部潜力是当前量子物理学和计算机科学研究面临的最大挑战之一,”《自然光子学》杂志上这一论文的第一作者Michele Spagnolo表示。维也纳大学的Philip Walther小组最近也证明,当使用量子资源和借用量子计算的方案时,机器人可以更快地学习。这一新成就代表着量子人工智能成为现实的未来又迈进一步。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- GTI 5G-A×AI融通发展项目 “智网慧城”计划全球招募正式启动
- 华为提出“四新”战略,助力运营商实现数智时代商业成功
- 华为王雷:星河AI网络全面商用,加速运营商新增长
- 华为提出构建以AI为中心的F5G-A全光网,助力运营商新增长
- 华为汪涛:AI加速超宽带产业创新,共赢商业新增长
- 移远通信:国内业务持续复苏 利润逐步修复
- 韩国《量子科技和量子产业促进法》正式生效
- 中国移动启动5G专网 定制产品短名单第一次增补采购:总预算13.5亿元
- 十二部门:探索核技术在量子计算等未来产业中的交叉应用
- 报告称2024Q3智能手机Top10:三星苹果前2,中国厂商占8席
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。