对于AI 神经网络主要由许多节点层组成的复杂架构,结果导致大量需要在训练中评估的参数,包括权重、偏差等。相比于简单的架构,更大、更复杂的神经网络需要更多的训练数据满足适当的收敛。
最近,在IEEE论文提出如何可以减少少量数据训练神经网络的新方法,其实,主要通过极坐标空间中的径向变换实现图像增强。虽然,并未改变数据的信息内容,而是改进了数据的多样性,并最终提升了神经网络的泛化表现。
其实,从图中可以看到。a)使用径向变换从笛卡尔坐标系统(左)中把样本映射到极坐标系统(右)。b)极坐标系统中的径向变换。c)使用径向变换筛选256×256图像(2D平面)中的离散样本。任意选定的极点在像素(170,50)处。d)把c)中筛选的样本从极坐标系统映射到笛卡尔坐标系统。红色样本表明了样本从c)到d)的映射方向。
然后,上图来自MNIST数据集的样本和使用极坐标系中的径向变换RT(•)的相应表征。还有,下图中的多模态医疗数据集的样本,以及在极坐标系统中使用径向变换的相应表征。
使用MNIST和医疗多模态数据集中的原始和径向变换图像训练的AlexNet和GoogLeNet模型的收敛行为。术语「RT」是指径向变换图像,术语「Original」是指用很少的原始图像训练的模型。x轴表示训练迭代,左y轴表示训练时的模型损失,右y轴表示使用验证数据集训练时的模型准确度。
通过原始和径向变换的多模态医疗图像训练的AlexNet和GoogLeNet的准确度(「Acc.」in%)和置信度(「Conf.」in%)值。「Abd」是指腹部MRI,「Std」是标准偏差。黑体部分是最佳结果。
此外,通过原始和径向变换的MNIST图像训练的AlexNet和GoogLeNet的准确度(「Acc.」in%)和置信度(「Conf.」in%)值。「Std」是标准偏差。黑体部分是最佳结果。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 华为徐直军谈鸿蒙:10万个应用是鸿蒙生态成熟的标志
- Counterpoint:2028年GenAI智能手机出货量将超过7.3亿部
- iPhone在华份额为何不断下滑?外媒分析:因无法提供AI服务
- 深圳中院宣告柔宇破产 曾发布全球首款消费级折叠屏手机
- Canalys:2024年Q3全球AI个人音频设备出货量达到1.26亿部 同比增长15%
- 全球个人智能音频设备Q3出货量激增15%,苹果下滑9.2%
- 中国智能手机品牌加速进军欧洲高端市场
- 华为Mate 70系列即将发布,霸占微博热搜前三
- 明基发布新款27寸2K显示器PD2706QN,首发价3499元
- PC Partner迁总部至新加坡并上市,生产基地转至印尼,继续领跑全球GPU市场
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。