2019年9月7日,e成科技受邀参加由AICUG人工智能技术社区主办的AI技术与产业应用结合的年度盛会AI 先行者大会。本届大会聚焦国际AI前沿技术、产业落地应用,汇聚中美AI行业领袖与技术大咖,共同探讨AI行业发展趋势与未来。
活动上,来自阿里巴巴、腾讯、Intel、NVIDIA、商汤、云从、旷视、驭势科技、思必驰、Airbnb等国内外尖端AI企业的智能技术专家,聚焦NLP、语音技术、AI解决方案、AI+新零售、CV、推荐算法、无人驾驶、人工智能平台等前沿主题,为大家展现AI技术魅力,共话AI技术与行业落地实践,探索行业发展与未来。
e成科技AI算法负责人刘洋出席了本次大会,并在活动上发表题为“面向人力资本场景的NLP智能平台”的精彩演讲,展示了e成科技在NLP(Natural Language Processing,自然语言处理)技术领域的创新研究以及在人力资本领域的应用突破。
△e成科技AI算法负责人刘洋发表演讲
困境:To B企业的AI落地之难
中国互联网发展环境及巨大的人口红利成就了C端的异军突起,但B端发展滞后欧美。当SAP、微软、甲骨文、Workday等早已风生水起之时,中国B端企业却声名不显。近几年,得益于云计算、大数据、人工智能、物联网等信息化浪潮齐发,To B回暖,但道阻且艰。
刘洋表示,AI的落地和商业化对很多企业来说仍面临着诸多困难,聚焦到人力资本领域,AI技术落地过程中面临着如下几个痛点:
数据稀缺性
数据是AI的“燃料”和技术创新应用的基础。对于AI算法来讲,只有获取大量与行业、领域相关,且标注、整理过的数据,才可能被使用。对于To C企业,得益于互联网的发展和人口红利,会产生大量用户行为数据;但对于ToB企业级服务来讲,产品发布前是没有用户使用的,所以面临的是更大的数据稀缺性。
领域知识
技术与业务场景之间往往存在着一道鸿沟,AI技术缺少专业领域知识和应用场景的理解一直是一大痛点。一般来讲,技术能力强的企业未必懂业务场景和专家知识,懂业务知识的未必有AI技术,这就会导致强大的技术无法与具有高度专业性的人力资本领域融合,机器学习模式与HR工作方式难以匹配。不像很多To C领域的知识通俗易懂,人力资本、金融等领域拥有非常系统和专业的知识,要实现与AI技术融合,不深谙领域知识是不可能的。
模型解释性
AI技术的落地,不是算法的累积或者炫技,也不是任务独立优化,而是一个面向产品性能和用户体验不断寻求满意性和解释性的过程。对于To C领域来讲,很多应用和产品面对的是海量用户,具有一定的容错性;但面向企业服务的To B领域不同,尤其是人力资本领域,比如招聘和晋升等人才决策可能会影响一个人一生的命运。所以在企业用户看来这一点非常重要,他们不光需要一个结论还需要一个解释,没有解释很难让人信服,这是在模型学习和算法设计里需要着重考虑的。
破局:“AI技术+HR知识”造就新物种崛起
尽管AI落地尤其是在人力资本领域落地面临诸多困境,但凭借领先的AI技术积累和优秀的AI研发团队,e成科技成为最先强调AI技术并率先将AI技术成功应用于人力资本领域的HRTech公司。
e成科技不但拥有领先的AI技术能力,还汇集了一批顶尖的咨询专家,AI技术与专业能力的结合,造就了既有AI技术又懂领域知识的新物种,并在长期的积累、实践和打磨中,探索了一套行之有效的优秀解决方案和成功经验。
活动上,刘洋通过一些实践案例进行分析,分享了e成科技是如何突破和解决这些痛点的:
多管齐下:技术创新和专家知识解决数据稀缺
数据稀缺性是B端服务企业最大痛点之一。针对这一点,e成科技结合自己的AI技术能力和丰富的行业经验积累,做了很大的创新突破。刘洋表示,一方面我们通过迁移学习的方法,寻找了很多其他行业的语料进行补充;另一方面,通过e成科技的专家团队,撰写了大量语料,并进行专业人工标注,为模型提供更多语料。同时,我们还尝试了很多新的技术、模型和方法进行样本构造。
通过这些方法,我们的人工智能产品取得了不错的效果,例如e成科技独立研发并首创的BEI机器人评测准确率超过80%,相当于1年经验顾问,可有效应用于面试选拔、人才盘点、内部晋升等多种场景下。
e成科技自主研发了BEI机器人
兼容并包:AI技术创新与拥抱过去
多年来,e成科技一直持续加强AI技术投入与创新研发。公司拥有超过50人的顶尖算法团队,在国内人力资本行业规模最大,是国内唯一成立Barbel人工智能实验室的HRTech企业。
在AI产品研发和智能算法模型搭建过程中,引入 学习、知识图谱、半监督学习、小样本学习等最主流、最前沿的AI技术。比如我们应用了近两年NLP领域乃至人工智能领域最流行、最前沿的技术之一——Bert,它彻底改变了预训练产生词向量和下游具体NLP任务的关系。刘洋表示,Bert跟人力资本业务比较贴合,我们将新技术应用其中,并基于具体场景做了很多技术优化,如样本优化、性能优化等,并基于人力资源场景语料专门训练了Bert模型。同时,我们把它平台化,把很多其他NLP工具集中在平台里,未来可以做到更强的模型,更加贴合业务。
为了满足模型的解释性,e成科技将最新AI技术与符号主义、专家系统等经典方法进行兼容并包,尝试了很多有效的方法。比如我们使用贝叶斯网络,它的最大优势是将先验知识与样本信息相结合,并能挖掘出特征间的因果关系,且对数据量要求并不高,这与很多人力资本场景业务完美贴合。
人工智能背后的人:专家助力技术拥抱业务
在AI技术高速发展的背后,离不开人工智能背后的人——专家。AI技术本身不具备生产力,只有与领域知识和业务场景结合才能释放巨大能量。专家对人力资本业务领域有着深刻的理解洞察能力,是AI技术落地到垂直产业的关键。
作为HRTech领域唯一拥有咨询专家的公司,e成科技组建了超过30人的来自全球知名咨询企业的顶尖咨询团队。在模型搭建和算法训练时,e成科技的专家团队提供了大量专业的人工规则,为AI技术与业务结合提供很大帮助,让AI技术更贴近业务场景需求。
刘洋表示用AI解决To B业务的困难就在于没有数据、场景和业务,很多技术能力和模型在实验室看起来很好,但不能满足客户需求。以人力资本经典场景“定岗定薪”为案例,他表示从算法思维角度,我们往往会带着技术先入为主的思维“误入歧途”,但是结果与业务方需求并不符合;若以业务为导向,深入解读业务场景,结合专家提供的专业、准确的业务信息与规则,模型会更具解释性,从而达到产品性能和企业用户的满意性。
所以,在未来AI逐渐落地的探索道路上,不仅需要性能优越的算法模型、大量的优质数据、专业的领域知识、真实的场景需求,最根本的是对业务的深层次理解。
面向未来:连结人与任务
数字化转型已经成为数字经济时代的必经之路,所有企业都在向智慧型企业转型。AI技术决定数字化的未来,e成科技通过AI技术的布局,推动AI赋能人力资本全场景,助力行业数字化转型。
AI开放平台
e成科技推出HR行业首个AI开放平台,并已经实现AI能力中台化,即⽤即取,高效连接算法能力和业务诉求;同时对外开放AI能力,将多年AI能力积累开放给所有HR行业友商,助力人力资本智能化升级。
e成科技推出HR行业首个AI开放平台
两大引擎:Bot和画像
e成科技通过Chatbot(智能聊天机器人)和画像两个核心引擎,提供全方位的数字化人力资本解决方案。Chatbot提升效率,画像提升效果。
五大Bot协同
e成科技创新独立研发了具有多模态交互能力的Chatbot,覆盖职位咨询、面试协同、意向确认、简历初筛、BEI访谈、员工服务等诸多场景,支持语音、文字、视频等多种形式,实现招聘的全面数字化升级;并基于专家知识图谱与NLP技术拆解、提取有效信息,刻画全面人才画像,为人才决策提供有效建议。
△5大Bot协同,实现全面数字化升级
画像精准洞悉人才
e成科技用动态画像取代静态简历,基于AI技术、候选人数据、专家知识生成人才报告,不仅包含个人信息、工作经历、教育背景等人才冰山上的信息,还 挖掘难以评判的素质、性格、潜力、价值观、领导力等冰山下信息,并解析各维度之间的联系,洞悉人才成长的内在机理和轨迹。画像的颗粒度更细,识人更准,企业可以全面升级招聘、人才盘点、定岗定薪、绩效管理等工作,实现企业人才管理的实时化与可视化,科学性与客观性。
未来,随着经济和科技的飞速发展,人的时间变得越来越碎片化,公司的形式也许会渐渐消亡,e成科技希望通过技术重新建立人与任务之间的连接,更好地调度人和任务,做到资源配置和效率的最大化。人们根据自己身上的多样才华充分地介入不一样的工作,人才的分工流动会充分释放才华。也许有一天我们会迎来这样的时代,这也是我们希望看到的未来。
分享结束后,听众与嘉宾进行了热烈互动,大家争相提问,对分享内容及e成科技的产品表现出很大兴趣。分享内容中干货满满,不仅包含了AI技术研究的探讨,也分享了技术落地于行业的成功案例,听众们表示受益匪浅。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。