语义分析解锁大数据封印

大数据已经不再是一个革命性的概念。在银行、保险公司和其他一些金融机构,数据在优化用户服务、精准风险预测、驱动利润增长、保持行为规范等方面发挥着越来越重要的作用。

大多数的组织机构正在认识到,在现今瞬息万变的交易市场上制定战略性的数据驱动型商务策略,对于保持竞争性和可持续性是至关重要的。事实上,凯捷公司研究表明北美90%的金融机构认为成功的数据方案将定义未来的成功者。

虽然很多企业意识到需将数据整合到商务决策中,但不少企业并不清楚了解如何基于数据制定决策。单就金融领域持续生成的数据来说,就包含了交易数据、用户数据、市场数据、管理数据等持续生成数据。这些信息的容量非常惊人,有些组织甚至都找不到合适的工具来分析这些数据。

语义技术应运而生。在最高层次上,语义分析可以给出结构数据和非结构数据的意义,并使其可以操作。因此解决了金融机构挖掘数据价值时面临的重大挑战。

语义分析的核心是图形数据库,也称为“triplestores”(三重存储)。“triplestores”由三元组或以主谓宾格式存储的信息片段构成。例如“美国银行是企业”或者“吉姆是人”。通过这种方式,三元组可以用来描述任何事情,并可以推断人物、空间、机构和其他实体之间的关系。

在金融服务的三个方面,语义技术有深远的影响。

用户体验

NGDATA研究显示,42%的美国消费者将用户服务作为选择银行的最重要的因素,然而只有20%的被调查者认为他们所选择的银行充分了解他们的需求和偏好。

当我们考虑所有消费者信息来源时,不难发现将全部数据整合到标准格式得到完整的图表并基于图表进行决策是多么的困难。提取、转化和加载(ETL)这些传统的工艺都是昂贵的资本消耗和时间消耗,这些传统工具往往并不能分析非关系型数据。

但是,语义技术 可以通过将包含人口统计信息、事务数据,网络数据、呼叫中心记录、重大生活事件、社交媒体数据等数据在内的用户信息快速和轻松的整合而解决这个问题。这样,银行就可以对其顾客有更全面的了解,准确知道用户的偏好,满足他们的需求。

众所周知,收益的增加来自于现有客户。通过更彻底了解用户偏好,银行不仅可以深化用户忠诚度,还可以提供更加个性化、关联化的用户服务,更好的预测和建议产品与服务,提高收益。

非法活动检测和预防

对内部交易、洗钱、身份盗窃和其他一些金融欺诈来说,语义分析将在识别和预防方面发挥重大作用。语义技术讲新闻、官方文件、电话记录、电子邮件等进行综合考虑,发现和推断人物、组织和事件之间的联系。

一个典型的案例是针对内部交易的。语义分析可以加速、简化调查过程。调查者可以通过语义分析观察上市公司在合并、重组、接管等重 宣布前的交易情况,结合电话记录或邮件记录甄别交易者和其他各方的通信情况。相同的语义技术也可以用来识别欺诈、壳公司或发现类似于腐败和洗钱等的不法行为。

简化操作

金融服务的报告结构和规范是被高度管制的,组织机构必须持有清晰的历史记录。

语义技术可以建议标准的行业模型使得所有的金融机构都可以映射数据。这个模型叫做金融行业业务本体(FIBO),被企业数据管理委员会定义为定义术语、事件、金融合约之间关系的“通用语言”标准。

FIBO 提供了清晰明确的方法来定义企业法人之间复杂的关系,协助使全球金融交易系统透明化。此外,该本体简化了规范和管理报告,使得业务使用者能够更好的服务自身。

固步自封的金融公司会被淹没在数据的海洋里。创新的金融公司会转向语义技术,通过该技术探索数据信息,解密数据价值,并为商务决策提供更好支持。

原文作者:Sam Smith
翻译:F.xy  via:数据工匠
校对:Jude
原文链接:http://analyticsweek.com/semantic-technology-unlocks-big-datas-full-value/

End.


企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2015-06-23
语义分析解锁大数据封印
大数据已经不再是一个革命性的概念。在银行、保险公司和其他一些金融机构,数据在优化用户服务、精准风险预测、驱动利润增长、保持行为规范等方面发挥着越来越重要的作用。

长按扫码 阅读全文

Baidu
map