考特尼·威尔逊跟随是CloudFactory营销总监。最近发表了篇关于人工智能的文章,翻译过来供大家学习交流,外语水平有限,如有语病,请海涵!
虽然许多人正在寻找“杀手级”的视觉,但更有可能视觉是AI和计算机的“杀手级应用”。
今天有AI模块的app,只需拍摄一个照片,便可在几秒钟内告诉你狗的种类,或植物的种类。当您将图像上传到Facebook时,系统将立即根据脸部识别技术进行识别,告诉你的朋友图像中有谁。
在某些情况下,机器的这种特定类型分析的能力远远超过了人类,而这些先进的人工智能技术的命脉便是视觉数据。
为什么视觉数据很重要?
人工智能的整个概念是可以构建机器来执行最人性化的任务。为了做到这一点,他们以人的智慧为模范。例如,最前沿的AI系统采用在人脑神经网络之后建模的 学习或深层神经网络。(当然,他们没有任何地方接近人类相同的能力)。
作为人类,我们通过观察我们周围的世界并以语言,行动和对象的形式收集我们自己的数据来学习。另一方面,计算机必须由人类提供数据以便“学习”。机器学习的过程需要比人类更多的数据,时间和迭代。
作为人类,视觉对我们自然而然而形成,我们学习的第一个技能之一就是认识面孔。然后,我们识别我们周围的物体,并赋予他们意义。
例如,我们只需要一次学习火是火,如果触摸它会烧毁我们,但机器需要数百个数据的例子来破译相同的含义,才能计算出这是火。
AI系统和视觉数据
视觉对于我们具有非常重要的意义,这解释了为什么65%的人都是视觉工作者。我们的大脑处理和分析的大部分(90%)的数据是可视化的,并且我们的大脑实际上处理的图像比文本快六万倍!
为了人工智能的进步,它需要变得更加人性化。要做到这一点,它需要更高质量的视觉数据和复杂的算法将信息翻译成有意义的东西。
当涉及到AI,领先的科技公司都在这个领域寻求突破和探索。他们知道,AI是一个改变我们生活和工作的游戏规则。有人认为,如果不计划采用人工授权的未来,企业将无法生存,但事实是,目前正在开发的许多技术还有很长的路要走。
在最近的TechCrunch文章中,斯坦福大学人工智能实验室主任李飞飞解释了视觉数据的重要性:
“构建智能机器的唯一途径是使其具有强大的视觉智能,就像动物在进化中所做的那样。虽然许多人正在寻找“杀手级”视觉,但我想说,视觉是AI和计算领域的“杀手级” 。
我们已经依赖于视觉内容。然而,飞飞预测,随着相机技术和传感器的使用越来越多,未来将更加依赖它。
“超过80%的网络是像素格式的数据(照片,视频等),有更多的智能手机的摄像头比地球上的人数,每个设备,每个机器和我们的空间每一寸由智能传感器提供动力。”
准确度是一切
从自动驾驶汽车到AR / VR技术的一切都依赖于图像识别和图像数据处理。没有用人类智能编译的数据和算法,机器仍然会将对象看作无意义的线条和形状。视觉识别属性意味着这些对象,使计算机有可能识别道路上的汽车,并自主导航。
许多人认为人工智能是企业和创新的未来,而且这很有可能是真实的,很多人都相信,但在许多方面,未来依赖的却是准确的视觉数据。
翻译:shawn
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 2025年全球网络安全支出将激增15% | 行业观察
- 华为数据存储两大新品齐发:全面闪存化,全面向AI
- 数据中心太耗电,微软携手Constellation Energy探索核能供电新途径
- 戴尔一周内发生两起数据泄露事件,Atlassian工具成泄露源头
- 华为ICT学院年会2024举办,ICT学院3.0计划正式启航
- 华为启动全球金融伙伴“融海计划”,共创行业新价值
- 华为联合多家伙伴发布《现代化金融核心系统白皮书:实践篇》
- 华为发布数据智能解决方案5.0,加速金融大模型应用从“赋能”到“产能”
- 华为加速推动鲲鹏昇腾原生创新,未来三年赋能百万原生人才
- 第九届华为ICT大赛中国赛区报名通道开启,大赛真题集首发
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。