双十一大数据处理要控制成本

大数据

作者:中关村在线

在大数据时代,最不缺伐的就是峰值流量的出现。一旦出现降价、打折或者平台周年庆,当日的峰值流量将可能刷新平台服务器承载上限,而这也意味着多种压力共同提升,其中最容易被忽视的一部分在于数据。因为当天数据量会爆炸,如果不及时处理,这些数据的核心价值将会随之而降低。

流量峰值带来数据爆炸

从去年的数据来看,我国电商业务的交易额达到了22.97万亿元,同比增长25.5%。这种增长率也意味着数据量飙升,从服务器、网络、物流、售后和品控等多个方面的数据都会产生压力。

服务器与网络的数据压力将首当其冲。每次活动前夕,程序员几乎都要彻夜难眠,有时需要靠”玄学”祈祷才能帮助服务器度过难关。即便云服务器准备再充分,扩容再强,也很难保证千军万马同一秒冲入活动界面时不会出问题。

商业促销是各种数据的爆炸点

相应的,商业促销也会带动物流方面的数据的爆炸。去年我国快递企业营收为4005亿元,同比2015年增长44.6%。如此大量的订单不仅存在的交通、工作人员等方面的难题,还有物流信息的处理、同步和管理等大量的难题。

品控和售后是对平台品牌的保障,如果这两步出了问题,那么平台就会面临口碑下滑,甚至活动起到相反的效果。而在活动期间,进行品控和售后都绝非简单,这些数据的产生和消化都在考验着工作人员和官方平台的协调能力。

数据资源面临时间考验

在这些方面产生的大量数据之后,把活动期间产生的大数据简单的统计然后丢弃显然是一种资源浪费。想让这些数据资源实现价值,在存储、处理和分析等方面都存在不小的难题。

第一,活动期间,企业将全面面临人手不足的问题。因此程序员、运维人员和系统管理人员常常顾此失彼,数据处理和分析人员又不能招收临时工应急,反还会被外借到其他部门去做紧急处理,从而让大量的活动峰值数据面临搁置危机。

第二,活动期间是一个数据爆发点,这些数据具有大流量、高并发和急需求等多种特点。原本慢条斯理的数据处理工作面临转瞬即逝的问题,简单来讲这就像把一个月的工作堆积到一天去完成,数据处理难上加难。

第三,数据处理等不得。事实上,所有的大数据都具有等不得的特点,数据的价值保质期仅有三个月,而以一些时效性较强的商业数据迭代速度更快,如果得不到处理,那么消耗大量资源存储的商业数据自身价值就会急速下滑,对企业的指导作用都会相应的下降。

数据处理要成本把控

平台开展促销活动不仅仅是为用户着想,也是对自身负载上限的一次考验。在未来几年中,我国的物流行业将会进入日均1亿快件的节奏,这就意味着订单量会爆发性增加,物流频次加速,数据量继续上升,数据处理的提速和降耗将会变成急需解决的问题。

数据处理提速目前提倡的是流式大数据处理,流式处理的优势在于借助开源的分布式系统,运行数据流代码时,分配数据到容错力高的计算机中并行运行,从而达到低延迟、可扩展和容错率高的目的。但这种处理方式最大的限制在于成本过高,尤其是对于超大量数据应用流式数据处理会让平台得不偿失,以此处理所得的数据价值未必比成本更高。

数据处理降耗则是指降低在数据处理过程中的人力和财力消耗。在促销活动期间,用人紧张导致人力资源价值提升,这就需要在数据价值和人力价值之间寻找平衡点;同时无法处理的数据在存储和管理方面的成本也需要纳入考虑范围。

解决数据问题需要从多个层面来考虑:人力方面,数据价值是不可忽视的一部分,专业人从事专业事,让人的价值最大化发挥;技术层面,将人工智能的 学习和机器学习技术深化与大数据技术的结合,让人在大数据处理流程中只指挥,不执行,把计算力还给云和HPC;数据层面,强化数据分流,将时效性明显的数据优先处理,并且有选择的进行数据清洗,降低存储和管理成本,提高处理效率。


企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2017-11-22
双十一大数据处理要控制成本
作者:中关村在线 在大数据时代,最不缺伐的就是峰值流量的出现。一旦出现降价、打折或者平台周年庆,当日的峰值流量将可能刷新平台服务器承载上限,而这也意味着多种压

长按扫码 阅读全文

Baidu
map