指导原则
书中所列举的,里有一些可能并不是原则,而是技巧。我理解的原则如下:
高并发原则:
无状态设计:因为有状态可能涉及锁操作,锁又可能导致并发的串行化。保持合理的粒度:无论拆分还是服务化,其实就是服务粒度控制,控制粒度为了分散请求提高并发,或为了从管理等角度提高可操性。缓存、队列、并发等技巧在高并发设计上可供参考,但需依场景使用。高可用原则:
系统的任何发布必须具有可回滚能力。系统任何外部依赖必须准确衡量是否可降级,是否可无损降级,并提供降级开关。系统对外暴露的接口必须配置好限流,限流值必须尽量准确可靠。业务设计原则:
安全性:防抓取,防刷单、防表单重复提交,等等等等。at least 消费,应考虑是否采用幂等设计业务流程动态化,业务规则动态化系统owner负责制、人员备份制、值班制系统文档化后台操作可追溯以上原则只是大千世界中的一小部分,读者应当在工作学习中点滴积累。
高可用
我们先说高可用的本质诉求:高可用就是抵御不确定性,保证系统724小时健康服务*。关于高可用,我们其实面对的问题就是对抗不确定性,这个不确定性来自四面八方。比如大地震,会导致整个机房中断,如何应对?比如负责核心系统的工程师离职了,如何应对?再比如下游接口挂了,如何应对?系统磁盘坏了,数据面临丢失风险,如何应对?我想关于上述问题的应对方式,大家在工作中或多或少都有所了解,而这个不确定性的处理过程,就是容灾,其不同的‘灾难’,对应不同的容灾级别。
为了对抗这些不同级别的不确定性,就要付出不同级别的成本,因此可用性也应是有标准的。这标准就是大家常说的N个9。随着N的增加,成本也相应增加,那如何在达到业务需要的可用性的基础上,尽量节省成本?这也是一个值得思考的话题。除此之外,100%减去这N个9就说所谓的平均故障时间(MTBF),很多人只关心那些9,而忽略了故障处理时间,这是不该的:你的故障处理速度越快,系统的可用性才有可能越高。
上面扯了一些可用性概念上的东西,下面来说一下技巧。开涛的书中没有对可用性技巧做出一个分类,我这里则尝试使用‘事情’来分个类。这里的‘事’就是故障,分为:事前(故障发生以前)、事发(故障发生到系统或人感知到故障)、事中(故障发生到故障处理这段时间)、事后(故障结束之后)。
按照上述分类,不同的阶段应有着不同的技巧:
事前:副本、隔离、配额、提前预案、探知事发:监控、报警事中:降级、回滚、应急预案,failXXX系列事后:复盘、思考、技改事前
副本技术
大自然是副本技术当之无愧的集大成者,无论是冰河时代,还是陨石撞击地球所带来的毁灭性打击,物种依然绵绵不绝的繁衍,这便是基因复制的作用。副本是对抗不确定性的有力武器,把副本技术引入计算机系统,也会带来高可用性的提升。无状态服务集群便是副本的一个应用,因为没有状态,便可水平伸缩,而这些无状态服务器之间需要一层代理来统一调度管理,这便有了反向代理。当代理通过心跳检测机制检测到有一台机器出现问题时,就将其下线,其他‘副本’机器继续提供服务;存储领域也是经常使用副本技术的,比如OB的三地三中心五副本技术等,mysql主备切换,rabbitMQ的镜像队列,磁盘的RAID技术,各种nosql中的分区副本,等等等等,数不胜数,几乎所有保证高可用的系统都有冗余副本存在。
隔离技术
书上提到了很多种隔离:线程隔离、进程隔离、集群隔离、机房隔离、读写隔离、动静隔离、爬虫隔离、热点隔离、硬件资源隔离。在我看来,这些隔离其实就是一种,即资源隔离,无论线程、进程、硬件、机房、集群都是一种资源;动态资源和静态资源也不过是资源的一种分类;热点隔离也即是热点资源和非热点资源的隔离;读写隔离不过仅仅是资源的使用方式而已,相同的两份资源,一份用来写,一份用来读。因此,隔离的本质,其实就是对资源的独立保护。因为每个资源都得到了独立的保护,其中一个资源出了问题,不会影响到其他资源,这就提高了整体服务的可用性。人类使用隔离术也由来已久了,从农业养殖,到股票投资,甚至关犯人的监狱,都能找到隔离术的影子。
配额技术
配额技术通过限制资源供给来保护系统,从而提高整体可用性。限流是配额技术的一种,它通过调节入口流量水位上线,来避免供给不足所导致的服务宕机。限流分为集群限流和单机限流,集群限流需要分布式基础设施配合,单机限流则不需要。大部分业务场景使用单机限流足以,特殊场景(类秒杀等)下的限流则需限制整个集群。除此之外,限流这里我们还需要考虑几点:
如何设置合理的限流值?限流值的设定是需要经过全链路压测、妥善评估CPU容量、磁盘、内存、IO等指标与流量之间的变化关系(不一定线性关系)、结合业务预估和运维经验后,才能确定。对于被限流的流量如何处理?有几种处理方式,其一直接丢弃,用温和的文案提醒用户;其二,静默,俗称的无损降级,用缓存内容刷新页面;其三,蓄洪,异步回血,这一般用于事务型场景。会不会导致误杀?单机限流会导致误杀,尤其当负载不均衡的情况下,很容易出现误杀;单机限流值设定过小也容易出现误杀的情况。探知技术
其只用于探知系统当前可用性能力,无法切实提高系统可用性,做不好甚至还会降低系统可用性。压测和演练和最常见的探知技术 。压测分为全链路压测和单链路压测,全链路压测用于像双十一大促活动等,需要各上下游系统整体配合,单链路压测一般验证功能或做简单的单机压测提取性能指标。全链路压测的一般过程是:压测目标设定和评估,压测改造,压测脚本编写部署,压测数据准备,小流量链路验证,通知上下游系统owner,压测预热,压测,压测结果评估报告,性能优化。以上过程反复迭代,直到达到压测目标为止;演练一般按规模划分:比如城市级别的容灾演练,机房级别的容灾演练,集群规模的容灾演练(DB集群,缓存集群,应用集群等),单机级别的故障注入,预案演练等。演练的作用无需过多强调,但演练一般发生在凌晨,也需要各系统owner配合排错,着实累人,一般都是轮班去搞。
预案
预案一般分为提前预案(事前)和应急预案(事中)。提前预案提前执行,比如将系统临时从高峰模式切换成节能模式;应急预案关键时刻才执行,主要用于止血,比如一键容灾切换等。预案技术一般要配合开关使用,推预案一般也就是推开关了。除此之外,预案也可和限流、回滚、降级等相结合,并可以作为一个定期演练项目。
事发
事发是指当故障发生了到系统或人感知到故障准备处理的这段时间,核心诉求即是如何快速、准确的识别故障。
监控和报警
一般出现故障的时候,老板大多会有三问:为什么才发现?为什么才解决?影响有多大?即使故障影响面较大,如果能迅速止血,在做复盘的时候多少能挽回一些面子,相反如果处理不及时,即使小小的故障,都可能让你丢了饭碗。越早识别故障,就能越早解决问题,而这眼睛便是监控和报警了。监控报警耳熟能详,这里不多赘述。
事中
事中是指当故障发生时,为了保证系统可用性,我们可以或必须做的事情。分为降级、回滚、应急预案(见上文,这里不多数了),faillXXX系列。
降级
降级的内涵丰富,我们只从链路角度去思考。降级的本质是弃车保帅,通过临时舍弃部分功能,保证系统整体可用性。降级虽然从整体上看系统仍然可用,但由于取舍的关系,那么可知所有的降级一定是有损的。不可能有真正的无损降级,而常说的无损降级指的是用户体验无损。降级一定发生在层与层之间(上下游),要么a层临时性不调用b层,这叫做熔断,要么a层临时调用c层(c层合理性一定<b层),这叫备用链路。无论是哪一种方式,都会面临一个问题:如何确定什么时候降级,什么时候恢复?一般有两种方式,其一是人工确认,通过监控报警等反馈机制,人工识别故障,推送降级,待故障恢复后在手动回滚;其二是自适应识别,最常用的指标有超时时间、错误次数、限值流等等,当达到阈值时自动执行降级,恢复时自动回滚。这两种方式无需对比,它们都是经常采用的高可用技巧。除此之外,我们还要注意降级和强弱依赖的关系。强弱依赖表示的是链路上下游之间的依赖关系,是’是否可降级‘的一种专业表述。
我们再来看书中的一些降级的例子:①读写降级,实际上是存储层和应用层之间的降级,采用备用链路切换方式,损失了一致性;②功能降级,将部分功能关闭,实际上是应用层和功能模块层之间的降级,采用熔断方式,损失了部分功能。③爬虫降级,实际上是搜索引擎爬虫和应用系统之间的降级,采用备用链路切换方式,将爬虫引导到静态页面,损失是引擎索引的建立和页面收录。
回滚
当执行某种变更出现故障时,最为稳妥和有效的办法就是回滚。虽然回滚行之有效,但并不简单,因为回滚有一个大前提:变更必须具有可回滚性。而让某一种变更具有可回滚的特性,是要耗费很大力气的。索性的是,大部分基础服务已经帮我们封装好了这一特性,比如DB的事务回滚(DB事务机制),代码库回滚(GIT的文件版本控制),发布回滚(发布系统支持)等等。我们在日常变更操作的时候,必须要确定你的操作是否可回滚,并尽力保证所有变更均可回滚。如果不能回滚,是否可以进行热更新(比如发布应用到app store)或最终一致性补偿等额外手段保证系统高可用。
failXXX系列
当出现下游调用失败时,我们一般有几种处理方式:
failretry,即失败重试,需要配合退避时间,否则马上重试不一定会有效果。failover,即所谓的故障转移。比如调用下游a接口失败,那么RPC的负载均衡器将会调用a接口提供方的其他机器进行重试;在比如数据库x挂了,应用自适应容灾将对x库的调用切换到y库调用,此y库即可以是faillover库(流水型业务),也可以备库(状态型业务)。failsafe,即静默,一般下游链路是弱依赖的时候,可以采用failsafe,即可和failover相结合,比如failover了3次还是失败,那么执行failsafe。failfast,立即报错,failfast主要让工程师快速的感知问题所在,并及时进行人工干预。failback,延迟补偿(回血),一般可以采用消息队列或定时扫描等。上面的1,2,4是属于重试策略,即书中《超时与重试》章节所讲到的重试。重试有个问题:退避间隔是多少?重试几次?一般在下游临时抖动的情况下,很短时间内就可以恢复;但当下游完全不可用,那么很有可能重试多少次都不会成功,反而会对下游造成了更大的压力,那这种情况就应当做用熔断了。所以正确设定重试次数、选择退避时间等都是需要仔细思考的。我们在来说一下超时,超时只是一种预防机制,不是故障应对策略,其主要为了防止请求堆积——资源都用于等待下游请求返回了。堆积的后果自不用多说,重要的是如何选择正确的超时时间?书上只说了链路每个部分超时时间怎么配置,却不知道应配置多少,这是不够全面的。
事后
复盘、思考、技改。不多赘述。
高并发
如果仅是追求高可用性,这其实并不难做,试想如果一年只有一个人访问你的系统,只要这一个人访问成功,那你系统的‘’可用性‘就是100%了。可现实是,随着业务的发展,请求量会越来越高,进而各种系统资源得以激活,那潜在风险也会慢慢的暴露出来。因此,做系统的难点之一便是:如何在高并发的条件下,保证系统的高可用。上文已经说了一些保证高可用的技巧,这节将结合开涛的书,说说高并发。
上图是我们生活中常见的一个场景——排队购物。收银员就是我们的服务,每一个在队列中的顾客都是一个请求。我们的本质诉求是让尽可能多的人都在合理的等待时间内完成消费。如何做到这一点呢?其一是提高收银员的处理速度,他们处理的越快,单位时间内就能服务更多的顾客;其二是增加人手,一名收银员处理不过来,我们就雇十名收银员,十名不够我们就雇佣一百名(如果不计成本);其三是减少访问人数,也即分流过滤,将一些人提前过滤掉,或做活动预热(比如双十一预热),在高峰之前先满足一部分人的需求。因此,想要高并发无外乎从以下几个方面入手:
提高处理速度:缓存、异步增加处理人手:多线程(多进程)、扩容减少访问人数:预处理(本文不涉及)提高处理速度
缓存
缓存之所以能够提高处理速度,是因为不同设备的访问速度存在差异。缓存的话题可以扯几本书不带重样的。从CPU可以一直扯到客户端缓存,即从最底层一直到扯到最特近用户的一层,每一层都可能或可以有缓存的存在。我们这里不扯这么多,只说简单服务端缓存。现在从几个不同角度来看一下缓存:
从效果角度。命中率越高越好吗?10万个店铺数据,缓存了1000个,命中率稳定100%,那是不是说,有99000个店铺都是长尾店铺?缓存效果评估不能单看命中率。从回收策略。如果把缓存当做数据库一样的存储设备去用,那就没有回收的说法了(除非重启或者宕机,否则数据依然有效);如果只存储热数据,那就有回收和替换的问题。回收有两种方式,一种是空间配额,另一种是时间配额。替换也有几种方式,LRU,FIFO,LFU。从缓存使用模式角度:用户直接操作缓存和db;用户直接操作缓存,缓存帮助我们读写DbB;从缓存分级角度。java堆内缓存、java堆外缓存、磁盘缓存、分布式缓存,多级缓存。从缓存使用角度。null穿透问题、惊群问题、缓存热点问题、缓存一致性问题、读写扩散问题。。。。。。更新方式。读更新、写更新、异步更新。如果缓存集群涉及到异地多集群部署,再结合大数据量高并发业务场景,还会遇到很多更加复杂的问题,这里就不一一列举了。
异步
异步这里有几点内涵,其一是将多个同步调用变成异步并发调用,这样就将总响应时间由原来的t1+t2+t3+…..+tn变成了max(t1,t2,t3….,tn),这也叫异步编排;其二是在操作系统层面,使用asyc io以提高io处理性能;其三是将请求’转储‘,稍后异步进行处理,一般使用队列中间件。其中的异步编排,可以使用CompletableFuture;异步IO一般框架都做了封装;而队列中间件则是最为常用的技术之一,也是我们重点关注的对象。
业务允许延迟处理,是使用队列中间件的大前提,即非实时系统或准实时系统更适合使用。主要作用有:异步处理(增加吞吐),削峰蓄洪(保障稳定性),数据同步(最终一致性组件),系统解耦(下游无需感知订阅方)。
缓冲队列:一般使用环形缓冲队列,控制缓冲区大小。
任务队列:一般用于任务调度系统,比如线程池等,disrupter
消息队列:一般意义上的消息中间件,不同业务场景需要的中间件能力不同,有的需要高吞吐,有的需要支持事务,有的需要支持多客户端,有的需要支持特定协议等等等等,妄图开发一个大而全的消息队列,个人觉得不如提供多种队列按需选型,之后在统一提供一个通信中台,全面整合消息能力。
请求队列:就是处理请求的队列,有点像流程引擎,可以做一些前置后置的入队出队处理,比如限流、过滤等等
数据总线队列:比如canal,datax等数据(异构或同构)同步用的。
优先级队列:一般大根堆实现
副本队列:如果队列支持回放,副本队列有些冗余。
镜像队列:一般用于做队列系统的高可用切换的。有时候也跨集群跨机房做复制,提供更多消费者消费,增加投递能力。
队列的消费端有pull模式或者push模式的选取。pull模式可以控制进度,push模式则实时性更高一些;pull能支持单队列上的有序,push很难支持。除了消费模式,队列还有一系列其他问题请参考其他书籍,这里不多说明了。
这里在补充一点关于异步的说明。同步转异步,可以提高吞吐量;异步转同步,可以增加可靠性。
增加处理人手
多线程
多线程(多进程)技术是‘增加处理人手’技术中最容易想到的,一般我们也广泛采用。无论是web服务容器、网关、RPC服务端、消息队列消费和发送端等等都有使用多线程技术。其优点也无需过多说明。这里我们只说一件重要的事情,即线程数的设置问题,如果线程数过高则可能会吃光系统资源,如果过低又无法发挥多线程优势。一般设置的时候,会参考平均处理时长、并发峰值、平均并发量、阻塞率、最长可容忍响应时间、CPU核心数等等,然后做一定的运算,计算出线程数、core和max,以及阻塞队列大小。具体算法可以自行谷歌。
扩容
在无状态服务下,扩容可能是迄今为止效果最明显的增加并发量的技巧之一。有临时性并发问题时,可以直接提扩容工单,立竿见影。但扩容的最大问题就是成本了,想想动辄几万的实体机,如果只是为了支撑一个小时的大促,而平常利用率几乎为0,那确实是浪费。因此便有了弹性云,当需要扩容时,借别人机器(阿里云)用完再还回去;以及离线在线混部,充分利用资源。
从扩容方式角度讲,分为垂直扩容(scale up)和水平扩容(scale out)。垂直扩容就是增加单机处理能力,怼硬件,但硬件能力毕竟还是有限;水平扩容说白了就是增加机器数量,怼机器,但随着机器数量的增加,单应用并发能力并不一定与其呈现线性关系, 此时就可能需要进行应用服务化拆分了。
从数据角度讲,扩容可以分为无状态扩容和有状态扩容。无状态扩容一般就是指我们的应用服务器扩容;有状态扩容一般是指数据存储扩容,要么将一份数据拆分成不同的多份,即sharding,要么就整体复制n份,即副本。sharding遇到的问题就是分片的可靠性,一般做转移、rehash、分片副本;副本遇到的问题是一致性性,一般做一致性算法,如paxos,raft等。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 工信部:“点、链、网、面”体系化推进算力网络工作 持续提升算网综合供给能力
- 2025年超融合基础设施的4大趋势
- 2025年将影响数据中心的5个云计算趋势
- 80万辆大众汽车因AWS云配置错误导致数据泄露,包含“高精度”位置记录
- 名创优品超4000家门店接入“碰一下”支付,引爆年轻消费热潮
- 免税店也能用“碰一下”支付了!中免海南免税店:碰一下就优惠
- 报告:人工智能推动数据中心系统支出激增25%
- 密态计算技术助力农村普惠金融 蚂蚁密算、网商银行项目入选大数据“星河”案例
- 专利纠纷升级!Netflix就虚拟机专利侵权起诉博通及VMware
- 两大难题发布!华为启动2024奥林帕斯奖全球征集
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。