如何使用你的手机摄像头识别皮肤癌

现如今,皮肤癌已经成为危害人类生命健康的疾病之一,它给人们的生活带来了诸多的不便与痛苦。皮肤癌是人类常见的恶性肿瘤之一。包括基底细胞癌、鳞状细胞癌、原位癌及少见的附件癌,如皮脂腺癌、汗腺癌等。常需借助病理检查才能确诊。

在世界范围内看,黑色素瘤也是公共健康的大敌。在澳大利亚,每年都有超过1.3万新增黑色素瘤患者,致死人数更是达到每年1600人。预计2016年美国将会有1万人死于皮肤癌,研究人员目前捉襟见肘的寻找发现此种疾病的新途径,根据新的研究表明,这个新途径就是方便,无处不在的iPhone拍照。

IBM科学院的科学家,该研究的作者诺尔·科代拉(Noel Codella)表示:“iPhone拍照手法将会给医生提供患者皮肤的图像,分析是否是黑色素瘤。”其实就是通过智能手机:当有人发现他们的皮肤出现了一个可疑的地方,他们可以使用手机的摄像头拍摄病变部位的照片,并提交图像通过分析服务进行评估,它可以识别并可靠地识别疾病的特点。但在实践中,它比这复杂得多。

2013年,IBM宣布了一项与纽约斯隆-凯特琳癌症治疗中心(Memorial Sloan Kettering)的合作,将把图像识别技术和机器学习系统运用于皮肤癌的甄别。Codella的研究团队已经分析了超过3000例的黑色素瘤以及其他皮肤损伤的病例,这一系统在分辨皮肤癌的阴性和阳性时,拥有超过95%的准确率,分析每张图片的时间不超过一秒。这一项目的成功的关键取决于两个因素。第一是广泛使用Dermascopes,这是可以附连到智能手机相机来优化病变照片-解析装置。第二个(更重要)的因素是含有癌性斑图像的庞大数据库的开发。该数据库采用IBM的机器学习,计算机视觉和云计算能力和开发手段,通过技术持续识别黑色素瘤的情况下访问。

2015年,IBM的团队就发布了该诊断方法的初步研究报告。在报告中,IBM描述了计算机视觉诊断方式的优势。借助MSK和国际皮肤成像合作机构的帮助,IBM已经拿到了初始数据集。在研究中,IBM成绩斐然,不过眼下这一算法还是不够智能,依然需要医学专家描出图中皮肤病变处的轮廓。至于诊断结果到底准确与否,IBM表示它们还未与人类医学专家进行直接对比。研究报告发布后,IBM一直在推进计算机视觉诊断技术的进步,其目标就是让电脑自动识别皮肤病变区域同时提高分析的效率。同时,它们还力邀8位专家进行诊断效果比拼,结果发现,IBM的计算机视觉诊断方式的表现比此前的诊断方式要好上3倍,同时其准确度与8位业内专家达到了相同级别。该论文现已提供在线版本,并将在2017年的“IBM研究与发展杂志”上发表。

不过,需要注意的是这一诊断方式依旧研究阶段。Codella表示在被皮肤病医生广泛使用之前,此技术可能还需要一些时间优化。当然,这意味着IBM的研究实验也有可能失败。不过,如果这个工具最终能成功被医生使用,肯定会为对抗皮肤癌做出巨大贡献,也将会是皮肤癌患者的福音。(科幻星系 康斯坦丁/文)微信:khxx-wk

科幻星系官方微信公众号:kehuanxx


企业会员

免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

2016-12-04
如何使用你的手机摄像头识别皮肤癌
​现如今,皮肤癌已经成为危害人类生命健康的疾病之一,它给人们的生活带来了诸多的不便与痛苦。皮肤癌是人类常见的恶性肿瘤之一。包括基底细胞癌、鳞状细胞癌、原位癌及少见的附件癌,如皮脂腺癌、汗腺癌等。

长按扫码 阅读全文

Baidu
map