原标题:国内首份协作机器人技术报告发布,四大前沿发展趋势速览
6月22日,机器人行业高端智库立德智库携手全球柔性智能机器人领跑者节卡机器人联合发布《2022年中国协作机器人技术发展报告》(以下简称“报告”),围绕协作机器人前沿技术展开分析,论述了协作机器人智能感知、自主认知、人机交互、碰撞检测等技术发展趋势。
来自上海交通大学、北京理工大学、上海机器人产业技术研究院、立德机器人研究院及节卡机器人的多位行业专家出席线上发布会,共同探索协作机器人关键技术和创新应用。
报告获取方式:
前沿发展趋势一:智能感知——多学科交叉融合
感知是协作机器人与人、协作机器人与环境、以及协作机器人之间进行交互的基础。就感知技术而言,除了多传感信息融合之外,协作机器人越发呈现出与脑神经科学、生物技术、人工智能、认知科学、网络大数据技术等 交叉融合的态势。
未来的研究方向为主动感知与自然交互理论及方法,更多传感器的加入,使协作机器人能够理解人类指令(通过声音、手势、图形)。基于对复杂动态环境下知识的主动获取、学习与推理方法、视觉认知与基于动态环境的主动行为意图理解与预测理论、协作机器人的自主学习与机器人知识增殖方法、以及多模态人机协作的态势感知与自然交互方法的研究,实现协作机器人与人之间相互的意图理解、信息交流,以及自然和谐的情感交互。
前沿发展趋势二:自主认知——复杂环境灵巧作业
高度智能是对新一代协作机器人的重大共性技术需求。当前协作机器人应用面越来越广,在复杂作业能力、自适应可重构的装配能力、对非结构化环境的感知能力,以及与人协作能力方面需要更加智能化。
协作机器人应用于在商业服务市场,主要挑战包括自然交互、人机安全、环境适应、复杂灵巧作业等方面,智能化是应对挑战的可行技术途径。
协作机器人工作于复杂、严苛的工业环境,需要更为智能化的环境感知和适应能力、人机协同作业能力和异常处理能力。先进的认知算法是实现协作机器人高度智能的主要手段。
未来的研究方向为复杂环境的自主认知。深入研究面向复杂环境与复杂任务的自主控制,辨识协作机器人的动力学行为和智能操控与环境之间的关系和影响规律,实现协作机器人灵巧作业与自主控制。
前沿发展趋势三:人机交互——机器人操作智能化
随着人机交互技术的快速发展和人机工程学、用户体验等领域的研究逐步深入,现有的一些人机交互系统不再是仅限于鼠标与键盘等简单的设备输入或示教操作,有些可通过语音识别、指纹识别甚至是虹膜识别,来完成工作程序的输入。
人们对协作机器人可用性与易用性的要求越来越高,手势理解用于人机交互已成为人机交互技术重要的研究内容。通过连续的手势识别操作协作机器人是人机交互技术的热门研究方向之一,拥有很广泛的应用领域。
手势识别是基于人的手部动作完成的,工业生产中,通过手势控制机器人运动,可简化机器人的示教过程与操作流程,具有很大的应用价值。现今,在手势识别领域最为突出的研究方法包括基于手套进行识别以及使用视觉信息进行识别。使用手套的识别方法主要是使用光纤等获取手掌、手指的关节位置以及弯曲程度并建模。基于视觉的识别方法是指从相机获取手势视觉图像进行一系列算法处理,进行识别获取结果。
前沿发展趋势四:碰撞检测——自适应柔顺控制
碰撞检测一般有基于传感器的碰撞检测和基于无传感器的碰撞检测。
基于传感器的碰撞检测有基于电子皮肤的检测方式,基于关节扭矩传感器或基于底座、末端六维传感器的方式检测碰撞。除了这类碰撞检测方法,其他的碰撞检测大多需要构建协作机器人的动力学模型,估计外力或构建观测器。当外力或观测器监测到干扰时则表示碰撞发生。
基于无传感器的碰撞检测,首先,通过人与协作机器人接触时单关节电机电流的检测,来判定协作机器人与人是软接触或是碰撞接触。其次,根据当前的电机反馈得到的电流实际值与动力学模型计算中的理想值来设计融合算法,产生时变的电力碰撞检测阈值,辨识事故碰撞或人有意识的软接触,解决人与协作机器人接触后的安全性碰撞问题。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 消息称塔塔集团将收购和硕印度iPhone代工厂60%股份 并接管日常运营
- 苹果揭秘自研芯片成功之道:领先技术与 整合是关键
- 英伟达新一代Blackwell GPU面临过热挑战,交付延期引发市场关注
- 马斯克能否成为 AI 部部长?硅谷与白宫的联系日益紧密
- 余承东:Mate70将在26号发布,意外泄露引发关注
- 无人机“黑科技”亮相航展:全球首台低空重力测量系统引关注
- 赛力斯发布声明:未与任何伙伴联合开展人形机器人合作
- 赛力斯触及涨停,汽车整车股盘初强势拉升
- 特斯拉首次聘请品牌大使:韩国奥运射击选手金艺智
- 华为研发中心入驻上海青浦致小镇房租大涨,带动周边租房市场热潮
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。