原标题:制造业AI人才启示录
AI人才缺乏,并不是什么新鲜话题了。
高薪、高学历,往往也与之捆绑在一起。纵观企业招聘JD,动辄硕士起步,博士不嫌多,本科学士可能都不配拥有姓名。
当然,这些都是那些“高大上”职位才能拥有的配置,比如推荐算法开发、机器学习工程师之类的。诸多人工智能相关培训机构,打出的旗号也往往与之有关,学员也大多有着JAVA、C++等从业经验。
但AI的人才繁荣,是不是仅凭这类高等教育人才就够了呢?
众所周知,AI产业化开始逐步在制造、农业、服务业等各个领域落地,千行万业的普通劳动者如何掌握与AI共事的基本能力,恐怕是继高阶人才荒之后的又一难题。
与AI共舞:下一代工人的必修课
以人工智能和机器自动化为形式的技术潮流,正在把我们带入一个新的工业时代。
过去探讨制造业融合AI时,如何改造设备、网络等基础设施,是最主要的命题。但伴随着一个个AI项目的落地,这个领域的劳动力技能短板也开始凸显。
一方面,制造业正在被90后、00后年轻人所抛弃。此前大部分制造业工作相对重复枯燥,每天一遍又一遍地机械重复着一个动作,劳动力与机器人看起来也没有什么差别,许多年轻人宁可送外卖也不愿意进厂。与此同时,人们也普遍认为,AI会取代那些从事流水线重复工作的工作。
但问题是,机器人替代了部分重复劳动和体力要求的常规操作型任务,同时也增加了许多非常规认知型工作任务的需求。举个例子,即使机器人接受了工作,当机器人出现故障时,也必须有人修理它们。这也是为什么,在先进的制造业工厂,人才与AI机器的协作能力反而更加重要。
而另一个问题,就是在有限的制造业劳动者中,大部分技能水平不足,可替代性强。这就导致许多诸如半导体企业会拒绝新的招聘,宁愿雇佣成本较低的承包商,只因为承包商可能拥有市面劳动力所普遍不具备的必需技能。
当然,这个问题并不是“中国特色”。实际上,在美国也面临同样的困境,许多美国先进的制造企业,认为工厂自动化水平的不断提高,劳动力已经无法胜任需要操作数控机床等技能的工作。
即使AI,也是需要有人去协同的,那么,智能化的工业4.0时代,劳动力到底需要什么?
山高水远的AI职业教育
目前,许多国家已经开始将人工智能与职业教育结合在一起。从这些先遣经验中,可以大致看到AI职业教育的两个关键难题:
1.高等教育系统与人资市场需求的矛盾
尽管获得自动化、算法等高级领域学历的学生更有机会晋升到中高级技术职位,但现有的高等教育系统根本无法满足工程劳动力的需求。
比如加州州立大学的教育官员就发现,每年该系统工程专家能够收到约十万份申请,来竞争1万个名额。
此时,向社区学院系统探索职业教育,就成了一个非常重要的补充力量。比如加州社区学院系统是加州州立大学和加州大学系统的“支线”,学生不需要本科学位就可以获得晋升需要的相关证书和技术工作。
电力、汽车和能源等领域,特别是太阳能安装等领域,雇主迫切需要员工能够跟上人工智能、机器学习这样的新技术,于是加州社区学院也开始推出了类似STEM这样的课程。
2.职业教育的技能衡量标准
提升制造业、服务业的AI工程技能,一个常规的挑战是,如何确定课程内容符合现实的应用标准?
实际上,美国也并没有成熟的解决方法。当前的做法是,将与机器协同的工作技能培训提前至八年级。也就是在K12阶段就对课程进行相应的调整,同时引入更多具有相关工作经验的兼职教师的加入,并要求技术工人的公司加强指导和其他在职培训工作,集合社会教育体系来共同摸索。
可以肯定的是,在这样的探索中,一方面大量的劳动者有望通过持续学习重塑自我,跟上快速迭代的智能社会。同时,先进制造业也有望雇佣这些高素质工人,创造出前所未有的智力资产。最后,将是整个国家生产制造和经济竞争力的全面提升和扩展。
那么,对于致力于在工业4.0实现制造业转型升级的中国来说,这些舶来经验是否值得借鉴呢?
用AI锻造中国匠心,需要破除哪些桎梏?
在讨论这个问题之前,我们必须正视的现实情况是:
首先,中国制造业过去十年都是以劳动密集(如纺织)、资本密集型(如钢铁)企业为主,在高技术制造业上与发达国家有着不小的差距,因此高素质技工的总量和质量相对也更少。根据国际机器人联合会(IFR)统计,2017年中国 密度(每万人拥有的 数量)仅为97台/万人,明显低于日本、德国等传统制造强国。
同时,近年来环保、产业结构调整等政策的相继落地,也导致制造业在“腾笼换鸟”的过程中出现了一定的“过渡期”,具体表现就是,大量劳动密集型低端制造开始流向东南亚等次大陆,而创新企业对高端人才的吸纳能力又出现暂时性的不足。
另外,长期以来,中国制造业的职业教育大部分是由企业来完成的,即传统的学徒工制度,但“师傅带徒弟”模式在AI时代显然首先连师傅都找不到了,新的技能养成体系尚未建立。
而面对人工智能浪潮,技能人才的短缺,仅仅依靠市场力量来调节,势必会经历一段漫长的调整期,恐怕会导致错过制造业AI落地的关键窗口期。
因此,在中国的AI职业教育中,恐怕也必须借助相应的政府和社会力量:
1.AI相关的技能形成体系有待全面铺开。
目前,我国的职业教育主要是由公共财政支持的,受限于规模与资金,大部分职业学校更倾向于开展制造业所需要的适性技能。对于AI相关的培训,往往需要大量投入来出储备师资、研发课程,在现有条件下,盲目上马AI技能培训也难以保证培训的质量和效果。
2.企业自主岗内培训的激励效果不足。
那么,让有相关需求的制造企业自行开展对高技能工人的培养呢?一方面,企业处于经营管理的考虑,对于培训投入往往都会有所限制,加上制造业人才短缺问题导致的流动性,企业投入高素质技工的风险也大大增加。因此,能否在政策上对积极参与员工技能培训的企业给予培训经费返还、税收优惠等政策支持;在科技项目立项、成果评定时,AI职业教育能否作为关键的考量标准,才有可能真正激发出制造企业主动与AI融合的积极性。
3.科技公司的社会化力量引入是重点。
培养高素质、AI化的技能人才,科技企业的力量也不可小觑。目前,已经有众多AI领域的领军企业,如百度、华为、阿里等纷纷建立了AI人才培养机制,推出了相应的公益培训体系。不过,目前大部分AI项目还着眼于高精尖的岗位职业资格,以及与双一流高等院校的研发合作,针对高素质工人的职业教育还很少。但从市场需求与技术普惠的角度来看,科技巨头的工业AI项目同样对合作伙伴的技工质量提出了一定的要求,未来通过与职业学校合作,输出相应的基础课程和职业培训,建立共享型公共实习实训基地,也会帮助科技公司收获合作方的高认可度。
每每提到工业4.0、制造业自动化等话题,人们总会第一时间想到德国的“工匠精神”,这是推动德国产品走向世界的品牌力量,也是中国制造在转型升级中所迫切渴求的魂力。但“工匠精神”并非天生天养,而是伴随着德国制造业和职业教育发展,所自然形成的人企之间的一种默契与规则。
从人海战术到高素质技工,中国的工业AI,也是时候开始锻造自己的“匠心”了。
- 蜜度索骥:以跨模态检索技术助力“企宣”向上生长
- 美媒聚焦比亚迪“副业”:电子代工助力苹果,下个大计划瞄准AI机器人
- 微信零钱通新政策:银行卡转入资金提现免手续费引热议
- 消息称塔塔集团将收购和硕印度iPhone代工厂60%股份 并接管日常运营
- 苹果揭秘自研芯片成功之道:领先技术与 整合是关键
- 英伟达新一代Blackwell GPU面临过热挑战,交付延期引发市场关注
- 马斯克能否成为 AI 部部长?硅谷与白宫的联系日益紧密
- 余承东:Mate70将在26号发布,意外泄露引发关注
- 无人机“黑科技”亮相航展:全球首台低空重力测量系统引关注
- 赛力斯发布声明:未与任何伙伴联合开展人形机器人合作
- 赛力斯触及涨停,汽车整车股盘初强势拉升
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。