原标题:GLUE榜单创新高!百度ERNIE夺榜单第一 多项任务取得SOTA
北京时间12月10日,预训练模型界的“MVP”百度ERNIE再展锋芒,在自然语言处理领域权威数据集GLUE中荣登榜首,并以9个任务平均得分首次突破90大关刷新该榜单历史,其超越微软MT-DNN-SMART, 谷歌T5、ALBERT等一众国际顶级预训练模型的表现,实力得到极大彰显。
本次GLUE榜单第一的含金量可谓十足。众所周知,通用语言理解评估基准GLUE是自然语言处理领域最权威的排行榜之一,由纽约大学、华盛顿大学、谷歌DeepMind等机构联合推出,以其涵盖大量不同类型的NLP任务,包括自然语言推断、语义相似度、问答匹配、情感分析等9大任务,成为衡量自然语言处理研究进展的行业标准。因此,吸引了谷歌、Facebook、微软等国际顶尖公司以及斯坦福大学、卡耐基·梅隆大学等顶尖大学参加。GLUE排行榜的效果,在一定程度上成为了衡量各机构自然语言处理预训练技术水平最重要的指标之一。此次能够超越国际顶尖公司及高校荣登榜首,背后是百度NLP技术的长足积累。
2018年底以来,以BERT为代表的预训练模型大幅提升了自然语言处理任务的基准效果,取得了显著技术突破,基于大规模数据的预训练技术在自然语言处理领域变得至关重要。众AI公司纷纷发力预训练领域,相继发布了XLNet、RoBERTa、ALBERT、T5等预训练模型。百度也先后发布了ERNIE 1.0、ERNIE 2.0,在16个中英数据集上取得了当时的SOTA。
从GLUE排行榜上来看,BERT使用预训练加微调的方式,相对过往的基线成绩大幅提升各任务的效果,首次突破了80大关。XLNet、RoBERTa、T5、MT-DNN-SMART等模型则分布在88-89分范围,人类水平则是87.1。
百度ERNIE此次登顶,成为首个突破90大关的模型,并在CoLA、SST-2、QQP、WNLI等数据集上达到SOTA。相对BERT的80.5的成绩,提升近10个点,取得了显著的效果突破。
百度ERNIE 2.0原理示意图
ERNIE 2.0 持续学习的语义理解框架, 支持增量引入不同角度的自定义预训练任务,通过多任务学习对模型进行训练更新,每当引入新任务时,该框架可在学习该任务的同时,不遗忘之前学到过的信息。
此次登顶的模型主要基于ERNIE 2.0持续学习语义理解框架下的系列优化。引入更多新预训练任务, 例如引入基于互信息的动态边界掩码算法。对预训练数据和模型结构也做了精细化调整。
同时,百度ERNIE 2.0的论文(https://arxiv.org/abs/1907.12412)已被国际人工智能顶级学术会议AAAI-2020收录,AAAI-2020将于2020年2月7日-12日在美国纽约举行, 届时百度的技术团队将会进一步展示近期的技术成果。
相较于谷歌BERT,后来居上的百度ERNIE为AI领域展现了惊人的中国“AI速度”。如今,百度在自然语言处理领域的深厚积累已辐射至不同领域。ERNIE预训练技术已广泛地应用于公司内外多个产品和技术场景,在百度搜索、小度音箱、信息流推荐等一系列产品应用中发挥了重要作用,大幅提升了产品的技术效果和用户体验,逐步赋能各行各业。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。