8月11日消息,近日,中国信通院“卓信大数据计划”公布第二批联邦学习安全专项通过评估的企业及其联邦学习产品/方案名单,其中,360数科隐私保护机器学习FastFL平台,通过评估认证。
据了解,FastFL平台采用了包括差分隐私、同态加密等多种主流的隐私保护技术,交互的数据经过加噪或加密,在确保原始明文数据无法被对方获得的同时,在算法层面进行了多项创新与优化。目前360数科已经与多家机构展开合作,将FastFL平台落地应用于信用评估、客群优化等。
第二期通过评估的企业及其联邦学习产品/方案名单
根据官方的介绍,2019年,360数科成立隐私保护与安全计算研究院,引入联邦学习技术发力大数据隐私保护研究。据360数科隐私保护与安全计算研究院院长沈赟表示,联邦学习是一种分布式的模型训练方式,本身并不包含隐私保护机制,需要结合特定的隐私技术才能达到隐私保护的目的。
沈赟称,“金融与科技的融合,极大程度上取决于对数据价值的深挖程度,而如何兼顾隐私性与可用性的关系,既是企业必须面对的道德底线,也是考验企业技术是否过硬的先决条件。”
他表示,针对本次评估,360数科推出的隐私保护机器学习平台FastFL(Fast Federated Learning),支持多方在不传递原始明文数据的情况下,进行数据求交、特征处理、模型训练、评估等全流程合作建模。
据悉,“卓信大数据计划”-联邦学习安全评估专项是中国信通院针对联邦学习产品安全性开展的评估项目,旨在响应我国数据要素市场化政策,夯实数据流通的安全基础,促进隐私计算行业健康发展。
此次评估涵盖了联邦学习流程中的数据管理、联邦对齐、特征处理、模型训练、模型评估、联邦预测6个阶段,包括联邦学习数据完整性保障、元数据发布安全、数据求交安全、统计量计算安全、联邦模型算法安全、交换安全等内容。同时,也评估系统或平台层的授权认证、通信安全、存储安全、过程存证等数据安全能力。
免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。