快手主导研究成果SAMP入选人工智能顶会EMNLP2023

随着 学习模型在自然语言处理等领域的广泛应用,模型推理速度和性能成为关键问题。近日,由快手主导的研究成果《SAMP:基于自适应混合精度的训练后量化模型推理库》成功入选该领域顶级会议EMNLP 2023,并于新加坡现场展示和分享。

该研究提出了一种名为SAMP的推理加速工具,通过自适应混合精度技术,在保持模型性能的同时,显著提高推理速度。其中包含自适应混合精度编码器和一系列先进的融合策略。自适应混合精度编码器可以在大量的通用矩阵乘法(GEMM)运算和Transformer层中找到最佳浮点定点混合精度组合方式,使模型推理的性能最贴近用户需求(计算精度或推理效率)。最终,混合精度计算取得了比全定点计算更好的计算精度。融合策略对embedding算子和量化相关计算操作进行融合改进,使得 CUDA 内核调用减少一半。同时,SAMP是由C++编程语言实现的端到端工具包,具有出色的推理速度,也降低了训练后量化推理的工业应用门槛。

表1:SAMP与同类系统相比的创新点

SAMP具有以下几项主要亮点:

1.自适应。SAMP 在训练后量化推理方法中平衡计算精度和延迟性能。用户可以针对不同的任务选择合适精度和推理延迟的混合精度配置。SAMP还可通过自适应分配方法推荐给用户最佳的量化组合模式。

2.推理效率。在较宽的精度范围(浮点到定点)中,SAMP 显示出比其他推理工具包更好的推理加速。在中文语言理解测评基准(CLUE)分类任务数据集中,与FasterTransformer相比,SAMP实现了高达1.05-1.15倍的加速。

3.灵活性。SAMP 涵盖众多下游任务,如分类、序列标记、文本匹配等。 Target 模块是可扩展的并且可以灵活定制。它对用户友好且对平台依赖性较低。 SAMP 支持 C++ 和 Python API,仅需要 CUDA 11.0 或更高版本即可。 另外,SAMP也提供了许多模型转换工具,支持不同格式模型之间相互转换。

图1:该论文在EMNLP2023现场展示和分享

主要研究者来自快手的田荣表示,能在模型推理这样的场景下取得佳绩是整个团队共同努力的结果,SAMP的贡献主要在三个方面,首先是解决了现有后量化(PTQ)推理工具在工业应用中精度损失大的问题;第二是推动了后量化(PTQ)技术在 NLP 多个下游任务中大规模使用;同时,该推理库还有轻量、灵活,对用户友好的特点并支持用户自定义任务目标。

据悉,EMNLP(Empirical Methods in Natural Language Processing)是自然语言处理和人工智能领域的顶级国际会议之一,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力,此次入选也意味着快手在该领域的研究成果获得了国际学者的认可。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

Baidu
map