人工智能会取代你的工作吗?
站在2022年的当下,大部分人给出的回答是——不会。事实上,AI产业的蓬勃发展,正在创造更多工作岗位。
AI产业的工作机会不仅仅局限于工程师岗位。如今,从城市到乡村,从学生到上班族,越来越多人开始将AI数据标注员作为一项兼职工作,为AI模型添砖加瓦。
但在AI数据标注领域,服务于数据标注的平台、工具却一直不够丰富。特别是可供中小企业、个人开发者使用的开源、免费的标注工具,更是少之又少。
如今,越来越多的AI开发者注意到了这一问题,并开始改变这一现状。为了满足以上需求,LabelFree数据标注平台目前发布了最新版本,提供高效的标注能力,并原生对接YMIR开源AI模型生产平台,提供了一站式的AI解决方案。这些低门槛的AI数据标注解决方案,或将在未来进一步加速AI的普及。
数据标注平台,能做到既便宜又好用吗?
在AI产业,数据,意味着什么?
数据,是AI生产的基座。一个AI模型从诞生到完善,直至应用于产品,实现商业化落地,需要大量数据的喂养。而在这一过程中,数据标注给AI模型提供了学习数据的重要基础,是AI从“人工”到“智能”的第一步。
在AI产业链条中,数据标注平台基本可划分为四类:
其一,是大型企业开发的数据标注平台,大多服务于企业内部的AI项目,不会对外开放。
其二,是SaaS类的数据标注解决方案,企业及个人开发者可付费使用。这类服务的优势是无需部署,可以直接使用;而劣势则是不支持本地化部署,可能存在数据合规风险,且大多不支持定制及二次开发。
其三,是直接将数据标注服务交给外包服务商,通过服务商的团队完成数据标注工作。其优势在于省心省力,而劣势也十分明显:数据安全、交付速度、标注质量均不可控。特别是一些具有一定专业性的标注工作,如医学影像类标注,更是考验数据标注服务商的专业能力。
最后,是开源的数据标注平台。与前几者相比,开源方案的使用门槛更低,且支持二次开发,并支持本地化部署。但与此同时,市面上的开源数据标注平台数量有限,且许多产品在标注员使用、项目管理方面均存在流程复杂、效率低的问题。因此,开源解决方案始终未能成为行业主流。
综上所述,在数据标注的工具选择上,AI开发者度的需求其实十分清晰:低成本使用,最好是开源项目,或支持免费授权;支持定制或二次开发;可以本地化部署,满足数据可控需求;标注、项目管理流程简便;最后,最好可以与MLOps平台紧密结合,更快、更好地开发、测试及部署模型。
为了满足以上需求,开源AI模型生产平台项目YMIR在日前上线了数据标注平台——LabelFree,希望通过免费、可定制、支持本地部署的解决方案,提升数据标注平台的易用性。
YMIR的定位是“一站式AI模型生产和部署平台”,其简化了AI模型的训练流程,支持以无代码开发的模式,实现数据管理、数据挖掘、模型训练、模型验证等功能。而LabelFree支持与YMIR平台无缝衔接,用户可以在YMIR平台选择数据集后直接跳转至LabelFree进行标注,图片的标注信息会同步至YMIR,标注完成后的数据集可以直接用来在YMIR平台进行模型训练。在后续模型迭代的过程中,用户也可以在YMIR和LabelFree之间快速切换,通过挖掘、标注和重训练的多次循环,获得满意的模型。
YMIR GitHub页面
今年5月,YMIR在GitHub上线。公开资料显示,其核心发起人包括云天励飞首席科学家,IEEE Fellow王孝宇;美国硅谷NEC实验室媒体分析部主管,印裔科学家Manmohan Chandraker;前谷歌、亚马逊、Snap机器学习研究员,硅谷初创公司Heali联合创始人、首席AI官,法裔科学家William Brendel等。
事实上,YMIR的许多特性,如一站式服务、开放式设计、免费使用等等,都在LabelFree上得以体现。LabelFree提供的低门槛、优体验的数据标注服务,也契合了YMIR的开发理念——通过开源AI系统能力,让每一家企业都能拥抱AI,加速AI产业化、平民化。
专注视觉信息标注,LabelFree有何不一样?
与市面上的大部分数据标注平台相比,LabelFree的优势是什么?
在产品定位方面,大部分AI数据标注平台都会同时支持视觉、语音、文本类数据标注,而LabelFree则不追求大而全,而是聚焦于计算机视觉领域。事实上,这也是AI数据领域最大的数据板块。根据艾瑞咨询发布的《中国AI基础数据服务行业发展报告》,中国AI基础数据服务行业市场中,图像类数据需求占比为49.7%,远高于其他类型数据。
对于专精于计算机视觉领域的原因,LabelFree工程师给出的答案是——LabelFree专注于计算机视觉数据的标注,希望依托于顶尖的AI算法团队、成熟的数据标注体系、大规模算法落地经验提供最低成本、最高效率的数据标注能力,让LabelFree的数据标注能力跻身行业第一梯队。
在图像分割技术上,LabelFree集成了辅助分割算法。在传统的标注模式下,标注员需要手动点击锚点,将被标注物从图片中分割出来;引入辅助分割算法后,标注员只需点击标注物,系统会自动将标注物分割,标注员只需要对锚点进行微调,即可完成标注。图像分割等技术的加入,提升了标注员在LabelFree平台的标注效率,从而降低AI开发成本。
事实上,目前市面上的大部分数据标注平台,在产品设计上更倾向于管理者视角,鲜少关注数据标注员的使用体验。在英文世界中,AI数据标注员常常被媒体称为“幽灵工人”(ghost worker),他们大多以兼职或远程办公的身份进行工作,是AI时代中常常被忽视的“看不见的人”。
因此,在AI时代,数据标注员的话语权是缺失的。此外,计件而非计时的计薪模式,也让许多数据标注平台没有动力在产品层面优化标注员的标注效率。
而LabelFree开发团队针对数据标注员群体开展了大量调研工作,以优化标注员的使用体验,帮助他们减轻工作压力,提升工作效率。例如,在图像复杂、目标众多的目标检测场景中,标注员对目标的标签设置存在大量重复操作,为此,LabelFree特别设计了“无限模式“,让标注员可以快捷地对某一类型连续操作,达到最高的生成效率。
与此同时,针对数据标注效率,LabelFree也完善了多人标注协作体验,并原生支持分布式对象存储,以解决海量标注数据的存储问题,降低存储成本,提升数据安全。
在提升数据标注效率的同时,LabelFree与YMIR的无缝衔接也简化了AI模型的训练流程。在LabelFree平台上完成标注后,AI工程师可以直接在YMIR上进行模型训练,检验模型训练成果,并将新的模型在LabelFree上进行预标注,同时提升数据标注与模型训练的工作流效率。
LabelFree使用文档
此外,最重要的是,LabelFree支持本地化、私有化部署,用户可以在以私有化的形式安装LabelFree,将数据留存在可控范围内,在保证数据安全的前提下完成数据标注流程。而这一特性,对于医院、学校等信息敏感类客户而言至关重要。
在商业化方面,LabelFree提供数据标注解决方案、定制化开发、技术支持,以满足专业商业客户的需求。此外,有AI需求的客户可以在算法商城模块上试用现有的算法方案,结合自身数据完善自己的AI模型。
提炼「数据石油」——AI数据服务市场迅速成长
未来,AI数据服务行业将驶向何方?
早在2017年,《经济学人》杂志就曾发表封面文章,提出了“数据石油”的概念——“世界上最有价值的资源不再是石油,而是数据”。与石油类似,数据本身价值有限,只有经过“提炼”之后,才能爆发出巨大的价值。
而数据标注平台则成为了“提炼数据石油”的关键。一方面,越来越好用的数据标注平台,完善了AI产业的基础设施,从而带动更多开发者及企业加入到AI产业,也可以做大AI数据标注员的就业市场,创造更多就业岗位。
2020年2月,人力资源社会保障部联合多部门发布通知,正式将“人工智能训练师”列为新职业,并纳入国家职业分类目录。这意味着AI数据标注员这一职业获得了国家层面的认可。
而另一方面,以数据标注、处理为代表的AI基础数据服务市场,仍处于高速增长之中。这意味着,数据标注平台、数据采集服务等AI基础数据服务,在未来存在着巨大的增长空间。
艾瑞咨询的数据显示,包括数据采集、数据处理(标注)、数据存储、数据挖掘等模块在内的AI基础数据服务市场,将在未来数年内持续增长,到2025年,国内AI基础数据服务市场的整体规模预计将达到101.1亿元,整体市场增速将达到31.8%(2024-2025年)。
AI数据基础设施的不断完善,将会推动更多数据流动起来,投入到AI模型训练的应用之中,并缓解困扰行业已久的“数据烟囱”问题。在大数据时代,挖掘数据价值比以往任何时刻都更重要,正如“大数据之父”、牛津大学舍恩伯格在《大数据时代》一书所言:“在大数据时代,我们不必非得知道现象背后的原因,而是要让数据自己‘发声’。”
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )