UCloud优刻得对象存储US3元数据改造(下)

前言

在《US3元数据改造(上)》中,我们介绍了US3的新版本元数据服务UKV-Meta,UKV-Meta是基于我们自研的分布式计算存储分离的KV系统UKV研发的对象存储元数据服务,下面我们将介绍一下UKV及其相关组件。

URocksDB

I.简介

URocksDB是UKV存储引擎, 是US3研发小组针对开源RocksDB定制化开发的Key-Value存储引擎。

II.RocksDB

LevelDB是由Google开源的,基于LSM Tree的单机KV数据库,其特点是高效,代码简洁而优美。RocksDB则是Facebook基于LevelDB改造的,它在Level的基础上加了很多实用的功能,例如Column Family等,具体的差别大家可以Google,也可以实际体验一下,这里就不再赘述了。

RocksDB目前已经运用在许多海内外知名的项目中,例如TiKV,MyRocksDB,CrockRoachDB等。

RocksDB使用上的缺点

RocksDB是通过WAL来保证数据持久性的,RocksDB先将数据写入磁盘上的WAL,再将数据写入内存中的Memtable中,当Memtable达到大小阈值(或者WAL的大小阈值),Memtable中的内容会被Flush成有序的SST文件持久化,WAL也会切换成新的WAL(代表旧的数据已被持久化,避免WAL过大)。

当RocksDB出现问题当机/重启后,可以通过重做WAL来使RocksDB内存中未持久化的数据恢复到之前的状态。

但是这里存在两个问题:

1、RocksDB读取WAL是线性读取的, 当为了读性能把Memtable设置的足够大时,WAL也可能变得很大(Flush频率下降),此时如果发生当机重启,RocksDB需要足够长的时间来恢复。

2、如果机器硬盘出现损坏,WAL文件本身被破坏,那么就会出现数据损坏。即使做了Raid,也需要很长时间来恢复数据。

因此RocksDB的可用性是个大问题。

另外由于LSM架构,RocksDB的读性能也会存在问题。

怎么解决?

Share Nothing

为了满足数据一致性这一基本要求,大部分的解决方案都是将一致性协议置于RocksDB之上,每份数据通过一致性协议提交到多个处于不同机器的RocksDB实例中,以保证数据的可靠性和服务的可用性。

典型如TiKV:

TiKV使用3个RocksDB组成一个Group,存储同一份数据,实例与实例之间不共享任何资源(CPU、内存、存储),即典型的Share Nothing模式。一旦有一实例数据有损失,可通过另外的实例迁移/同步日志,来做恢复。

这种模式解决了可用性问题,也有不错的扩展性。

但也存在缺点:

•目前CPU的成本偏高,是我们在实际业务中重点关注的成本优化点之一。而RocksDB(LSM Tree架构)的一大问题就是写放大。每个RocksDB为了提高读性能、降低存储大小,都会进行不定期Compaction(将数据读出来重新Decode/Encode,再写入磁盘),编解码本身会消耗大量的CPU资源。而这样的多份(一般3份)写入RocksDB,等于CPU消耗确定会放大3倍。并且写放大由于提高了写的次数,即提高SSD的擦写次数,会显著减少SSD的寿命,提高系统的成本。

•这种架构计算与存储是耦合在一起的,无论是计算先达到瓶颈,还是存储先达到瓶颈,两种状况虽然不同,时间点也不一致。但通常不管哪种情况都是加机器,因此就会存在不少浪费。

•不易扩展:计算和存储耦合模式下,存储扩展通常需要迁移大量数据。

存算分离

将数据存储于分布式文件系统中,由其保证数据的一致性和存储的扩容,而计算节点仅仅处理数据的写入和读取。

URocksDB使用自研的分布式存储服务Manul作为底层的存储,Manul具备数据高可靠,服务高可用的特性, 拥有自动容灾、扩容等功能。这样当主节点写入一份数据时,Manul会自动做三副本同步数据,而从节点也能很快同步到主节点做好的数据,无需再多做几次重复的Flush或者Compaction。

当存储节点容量不够时,可单独加入新的存储节点,Manul能够自动平衡数据。

当计算节点达到瓶颈时,URocksDB拥有独特的热点分裂功能,在无需做数据迁移的情况下即可快速增加计算节点,降低热点压力。

此时就能够更精细化的运营计算资源和存储资源,降低业务成本。

URocksDB热备

RocksDB是支持Read Only模式的,但是只是类似于读一个快照,并不能读取到主节点DB的最新数据。我们实现了RocksDB Secondary Instance(以下简称RSI)模式,能够通过底层分布式存储系统实时的读到另一个RocksDB最新写入的数据,使得从节点不仅能与主节点共享一份持久化文件数据,还能保持从节点内存数据紧紧跟随主节点,提供读取能力,和快速容灾能力。

RSI如何做到数据的同步?

利用底层存储分布式的特点,无论在哪个节点,从节点都能看到与主节点一致的数据,因而可以由从节点定期Tail Read并回放主节点的WAL文件和Manifest文件至其内存中,以跟上主节点的内存中最近的数据。

RSI容灾

如果直接重启主节点,那么由于LSM架构的缺陷,主节点必须回放所有WAL日志至内存中后,才能对外提供服务。但是只读的从节点在同步数据后,其Memtable中的数据应与主一致。由于从节点不断的Tail Read主节点写下的WAL日志,因此从节点只需要先Tail Read 主节点写入最新的WAL日志即可同步好数据。然后新建一个主节点对象,再将内存中的Memtable和VersionSet切过去即可。

原生RocksDB在重启时,会先加载所有的WAL日志至内存中,再将内存中的Memtable全部Flush至Level 0文件。这样RocksDB就能获得一个“干净”的Memtable,然后对外提供服务。但是如果Memtable很大很多,那么Flush将会占用很多的时间。研究了RocksDB的SwitchWAL的过程后,通过代码改造,把这一部分移动到后台线程去做了(即把加载的Memtable转为只读的Immemtable)。

当主节点挂掉时,从节点内存中即有最新的写入数据,所以从节点抢到ZK的主后,即可将自己从只读节点转为可写节点,同时因为从同步Manifest文件,从已有所有的数据文件信息(与之前的主是同一份),无需进行数据迁移,因此可立刻对外提供服务。

采用此种优化后,我们线上的节点容灾时间大幅度降低,主从切换P99达到100ms内。

UKV

UKV是UCloud优刻得自研的计算存储分离的分布式KV存储系统。其存储底座为分布式统一存储Manul,Manul是具备自动数据平衡、异构介质存储、EC存储等功能的高性能、高可用、分布式存储服务。

UKV提供了集群管理服务,快速备份等常规功能,还针对US3元数据服务设计了数据结构,使其在UCloud优刻得日常的业务场景下提供更优秀的性能。

UKV使用UCloud优刻得自研的、由开源RocksDB定制化的URocksDB作为计算节点,同时依托Manul,实现了主从热备,热点节点快速分裂等特色功能。

热点分裂

由于UKV采用Range Sharding(因为对象存储有许多的列表服务,会有大量的范围读请求,因为我们采用Range Sharding来满足此项需求),所以比较容易出现热点问题,同时我们也需要集群的横向扩展能力,以保证集群服务能力,所以UCloud优刻得为UKV实现了热点分裂的功能。

设计原则:

1、服务可用性

- 用户服务不可长时间停止

2、数据完整性

- 元数据完整性不容有误

3、失败回滚处理

- 有任何预期外状态能兜得住

4、自动化

- 自动检测热点节点做分裂,自动挑选空闲机器节点做目标

分裂流程

首先Range信息是持久化在ConfigServer集群的。UKV启动时,如果它是Active节点,ConfigServer会给其下发Range。UKV会与ConfigServer保持心跳,不断上传节点信息,包括容量、QPS、机器状态。ConfigServer根据其状态判断节点是否触发热点分裂,如果触发,则会选择一个空闲节点作为目标端。

分裂主要分为四个阶段:

1.SPLITTING_BEGIN

ConfigServer发起SplitRequest

2.HARDLINK_BEGIN

UKVRequest定期更新其硬链状态(向ConfigServer发送请求,如成功顺便带上计算的Range)

3.TARGET_OPEN

ConfigServer向Target发起OpenRequest请求(Target Open但不启动Compaction)

4.OPEN_COMPACTION_FILTER

ConfigServer使用心跳来让Source和Target开启Compaction Filter

我们主要应用计算存储分离的能力,利用硬链功能和RocksDB的Compaction特性,来保证数据不移动,且能过滤非Range数据。

分裂时间

我们单节点大小上限设置为256G,实际线上300ms以内就可完成分裂,配合上上层的重试,分裂过程中用户是完全无感知的。

数据迁移

由于新老列表数据存储结构不一致(新的是字典序),老的是先目录再文件,所以还做了列表服务Proxy的兼容开发, 避免上层业务改动

以现有扩容方式,无缝加入UKV-Meta,缩小影响范围。

我们研发了专用的Migration服务来为我们的UKV-Meta进行迁移,将存在于老架构的元数据迁移至UKV-Meta,以便将老架构占用的机器下机,降低业务成本。

Migration服务可以在不影响用户业务的情况下,安全的进行数据热迁移,保证数据的一致性,同时还具备迁移数据实时校验功能,防止迁移过程中出现问题。

总结

由于当前芯片、机柜等硬件资源价格高昂,使得云计算公司对CPU资源、存储资源的使用提出了更高、更精细化的需求。计算存储耦合的方式在扩容集群、扩充CPU、存储资源时,不仅会引发数据的Reshuffle,还会消耗比较大的网络带宽、以及CPU资源。

通过分离存储资源、计算资源,独立规划存储、计算的资源规格和容量,使得计算资源的扩容、缩容、释放,均可以比较快的完成,并且不会带来额外的数据搬迁代价。存储、计算也可以更好的结合各自的特征,选择更适合自己的资源规格和设计。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

Baidu
map