一、线索相关概念解读
在深入理解线索培育、线索评分、线索画像等概念,以及其对应的神策数据解决方案之前,我们需要先了解一些线索相关的基本概念。
1、线索(Leads)
线索又称“例子”(Leads 的音译),用来描述潜在用户的信息集合,代表一次潜在的营销与销售机会。只有获取了线索,我们的课程顾问、班主任老师们才能开展他们的销售转化工作,最终将用户转化成付费学员、高价值学员。
2、线索到现金流(Leads to Cash)
线索到现金流指的是:从线索进来后,经过运营团队、销售团队层层“引导”,到最终成单转化的全流程。不同的行业流程不尽相同。
比如目前教育行业的主流玩法是,通过投放低价课、引流课吸引用户低价付费,然后引导学员添加班主任企微,完成从公域到私域的转化。接着,班主任会将学员们拉进训练营班级群,在群里督促大家学习,试听课后班主任会进行转化工作。在这整个 LTC 流程中,班主任需要借力各种“工具”来提升转化率、提升工作效率。
3、其他术语
除了上述接触最多的两个概念外,还有常见于 B2B 行业中的 MQL、SQL、SDR 等,此处做一个简单介绍。
MQL(Marketing-Qualified Leads,营销合格线索):MQL 指的是在市场营销的基础上,对企业的产品或服务更有兴趣、更高转化潜力的线索。
SQL(Sales-Qualified Leads,销售合格线索):SQL 指的是经过销售跟进后并被判断为高质量的 MQL。若 MQL 代表着客户还未准备好购买,那么 SQL 就代表着客户已经在决策、购买流程中了。
SDR(Sales Development Representative,销售开发代表):他们的主要工作是对线索进行清洗与初筛,从而提供给销售团队跟进。
可见,所谓的 MQL、SQL 其实也代表着一个线索的不同阶段,由于 To B 的产品与服务采购流程较长,重决策,因此一个线索需要拆分成多个阶段、并且由不同的专业团队跟进、消化。
而对于教育行业来说,To C 的课程与服务用户购买决策链较短,我们只需要理解 Leads、LTC 即可。
二、线索获取方式
线索获取的方式多种多样,不同方式获取的线索数量、质量各有差异,接下来将详细介绍。
1、信息流广告
如 LTC 所述,目前教育的主流玩法是在各个主要媒体平台付费投放免费课、低价课等,从而获取大量的线索。
这一方式获取的线索量较大,但质量相对于其他方式而言较低,如何根据不同的业务阶段制定投放策略、渠道评估体系、提高投放的 ROI,神策数据有完善的渠道追踪方案、渠道效果评估体系解决方案。
2、转介绍/老带新
通过运营私域流量,引导学员/老用户在全学习流程中分享内容,从而带来新用户注册、购买。此方式获取的线索量相对有限,但线索质量普遍较高。
目前投放成本高企,转介绍作为最重要的免费获客方式,越来越受到各个教育公司的重视,如何在保证线索质量的同时提升线索数量,是神策数据为在线教育企业实现的重要价值之一。
3、直播转化
直播带货作为近几年新兴的、火爆的电商模式,同样适用于教育行业的课程销售,直播的平台包括不限于抖音、快手、淘宝、微信视频号。
部分教育公司将直播作为引流获客的方式,在直播间通过低价课获取大量的线索,然后引导用户下载 App、添加班主任微信,进而进行一对一引导转化。当然,也有的公司将直播作为重要的转化场域,配合限时特价、秒杀等方式直接完成高客单价课程的转化工作。
4、其他方式
App 投放:利用应用商店推广、软文营销等方式,提升 App 的下载注册量,从而获取线索。此方式适合用于刷题等工具类的 App,优秀的工具类 App 运营,能带来丰厚的流量;
SEM/SEO:进行关键词投放或搜索引擎优化,提高官网的曝光量,并配合资料钩子等方式获取线索;
渠道代理:线上渠道代理、线下培训机构合作、图书中印制二维码等方式引流,成单后返佣金;
资源购买 & 互换:从数据服务商处购买数据,与其他非竞对公司合作或资源置换。
在线索获取这一环节,诸如像信息流广告投放、转介绍等,神策数据均具备完整的解决方案,鉴于本系列的文章重点在于阐述获取获取线索后的转化监控、线索培育、线索评分、线索画像的解决方案内容,故此处不再展开详阐。
三、线索转化面临的挑战
在获取完线索后,我们要开始展开线索转化工作了。通常,我们将从线索到现金流的全过程简称为“线索转化”,故而“线索转化全链路”需要解决转化监控、线索培育、线索评分、线索画像等一系列疑难杂症,在本篇及后续的文章中,我们逐一分析并破解难题。
当前教育公司在线索转化方面的主要挑战可以概括为三点:
1、转化效果数据反馈不及时
对于数据采集缺失或数字化建设较初级的公司,线索转化数据、营收数据往往需要需要手工查询,导致管理层不能及时了解实时的营收情况,也不利于一线的课程顾问及时地了解自己的工作业绩。
即使对于数字化建设较高级、研发实力较强的公司,内部的 BI 系统也缺乏灵活的维度下钻分析功能,亦或者缺失指标监控与报警机制,或报警机制比较初级,导致转化工作出现异常时无法及时洞察从而采取措施挽救。
2、线索质量无法把控
多种方式获取的线索质量参差不齐,全部依赖于销售人工外呼,又会造成外呼资源的浪费;遇到活动推广带来了大量的线索,又会因为销售团队人员有限,无法及时消化所有线索,导致一部分线索被浪费或跟进滞后错过最佳转化时机。
种种问题的根源在于,缺少必要的线索培育机制将低熟度的线索培养成高熟度,缺少关键的线索评分机制来筛选高质量线索,缺少实时的通知机制告知销售优先触达高意向线索。
3、用户情况不明朗,沟通效果差
即使销售通过电话、企微等方式联系上了用户,也会因为对用户知之甚少,一开始只能频繁地问用户问题“索要”信息,引起用户反感,导致沟通效果差、转化率低下。
当然,不排除个人销售能力强的员工,通过自身能力弥补系统的不足,但若我们能在系统层面解决这一问题,将对销售团队整体的转化率上有质的提升。
四、神策数据提出的解决方案
基于上述诸多挑战,神策数据在线索转化全链路上研究和制定了综合解决方案。
1、单点破局能力强化
以线索质量参差不齐的问题为例,目前主流的解决方法是对线索进行评分,通常的做法是基于不同的规则制定不同的分数,例如用户活跃了加多少分,访问了课程详情页加多少分,加购物车了再加多少分,再配合一定的减分机制。
看似完美的方法,在真正落地时其实困难重重,例如哪些行为要加分?不同的行为分别加多少分?这些细节都会在落地时造成极大的困扰,当然可以利用数据分析、专家经验来解决这些问题,但是每次策略调整都是耗时耗力。更糟糕的是,每一次策略调整都不能保证效果比之前更好,只能通过线上验证来比较好坏。万一效果更差,就白白浪费了这一段验证期的线索量、时间。
所以,在线索质量的问题上,神策数据自研了算法评分机制,基于机器学习技术利用历史数据来构建用户转化概率预测模型,再利用预测结果来进行分级,且当只有训练模型的准确率、召回率达到一定的标准才会上线。一方面利用机器智能决策来解决评分规则的困扰,另一方面又能保证每一次策略迭代都不是“开盲盒”。
2、完整的数据应用闭环
有了线索评分、分级,仅仅是万里长征走完了第一步,如何平衡数据准确性和实时性,如何将这些评分数据与销售转化工作有机结合,也是一个难点。
在数据与业务结合方面,神策智能运营的策略引擎,能够帮助企业实现批量圈选进行线索培育,也可实现实时触发进行关键时机一对一沟通转化。更关键的是,企业可以在神策智能运营中完成转化率、转化效率的内外部多重目标监测,从而实现数据在业务中的闭环应用。
数据在业务中的闭环,除了可应用在线索转化场景,也可拓展延伸到课程续报、流失召回等场景。
3、全链路综合解决方案
除了上述提到的单点能力强化、场景闭环应用外,我们更能提供全链路的综合解决方案,覆盖的场景和能力包括且不限于:
实时的数据 BI 看板,方便管理层及一线销售及时了解业绩
多维度下钻分析,满足销售运营、分析师的数据分析诉求
智能预警及多样通知方式,保障异常情况快速响应与处理
线索转化概率预测,科学高效地解决线索评分与分级问题
智能运营策略引擎,实现数据在业务中的 应用
Webhook 通道对接,低成本地实现关键时机触达用户
用户标签体系与单用户画像,助力销售一对一转化
企微客情卡,赋能班主任沟通与标签反打、信息记录
……
4、外科手术式建设规划
针对线索转化全链路的解决方案,我们遵循从易到难、从前到后的原则,给出了建议性的建设阶层次、目标,如下图所示:
同时,考虑到不同的公司已有系统不同、数字化水平不同、产品研发能力不同,我们也可以基于企业的实际情况做出诊断分析,给出外科手术式的建设规划方案,精准地解决教育公司目前在线索转化链路中存在的问题。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )