作者:微信WeOLAP团队&腾讯云数据仓库 Clickhouse 团队
微信作为一款国民级应用,已经覆盖了社交、支付、出行等人们生活的方方面面。海量多样化的业务形态,对数据分析提出了新的挑战。为了满足业务数据分析的需求,微信WeOLAP团队联手腾讯云,共建千台规模、数据 PB 级、批流一体的 ClickHouse 数据仓库,实现了10倍以上的性能提升。下文将由浅入深,为大家揭晓微信在 ClickHouse 实时数仓实践中积累的经验及方法。
一、微信遇到的挑战
一般来说,微信主要的数据分析场景包含以下几个方面:
1.科学探索:服务于数据科学家,通过即席查询做业务上的归因推断。
2.看板:服务于运营和管理层,展示所关注的核心指标。
3.A/B 实验平台:服务于算法工程师,把新的模型,放在 A/B 实验平台上做假设检验,看模型是否符合预期。
除此以外,还有实时监控、日志系统明细查询等场景。
在所有的场景当中,使用者都有非常重要的诉求——快:希望查询响应更快,指标开发更快完成,看板更新更及时。与此同时,微信面临的是海量的数据,业务场景中“单表日增万亿”很常见,这就对下一代“数据分析系统”提出新的挑战。
在使用 ClickHouse 之前,微信使用的是 Hadoop 生态为主的数仓,存在以下这些问题:
1.响应慢,基本上是分钟级,可能到小时,导致决策过程长;
2.开发慢,由于传统的数仓理念的多层架构,使得更新一个指标的成本很高。
3.架构臃肿,在微信业务体量规模的数据下,传统架构很难做到流批一体。进而导致,代码需要写多套、数据结果难以对齐、存储冗余。经过十几年的发展之后,传统的 Hadoop 生态的架构变得非常臃肿,维护难度和成本都很大。
所以,微信一直在寻求更轻量、简单敏捷的方案来解决这些问题。经过一番调研,在百花齐放的 OLAP 产品中,最终选定了 ClickHouse 作为微信 OLAP 的主要核心引擎。主要有两个原因:
1.效率:在真实数据的实验场景下,ClickHouse 要比 Hadoop 生态快10倍以上(2020年底测试);
2.开源:微信的 A/B 实验、线上特征等场景会有些个性化需求,需要对引擎内核做较多改动。
因此,微信尝试在 OLAP 场景下,构建基于 ClickHouse 计算存储为核心的“批流一体”数仓。
但是,使用原生的 ClickHouse,在真正放量阶段出现了很多问题:
1.稳定性:ClickHouse 的原始稳定性并不好,比如说:在高频写入的场景下经常会出现 too many part 等问题,整个集群被一个慢查询拖死,节点 OOM、DDL 请求卡死都比较常见。另外,由于 ClickHouse 原始设计缺陷,随数据增长的依赖的 zookeeper 瓶颈一直存在,无法很好解决;微信后期进行多次内核改动,才使得它在海量数据下逐步稳定下来,部分 issue 也贡献给了社区。
2.使用门槛较高:会用 ClickHouse 的,跟不会用 ClickHouse 的,其搭建的系统业务性能可能要差3倍甚至10倍,有些场景更需要针对性对内核优化。
二、微信和腾讯云数据仓库共建
此时,腾讯云数据仓库 Clickhouse 团队积极深入业务,主动与微信团队合作,双方开始共同解决上述问题。腾讯云数据仓库 Clickhouse 提供全托管一站式的全面服务,使得微信团队不需要过多关注稳定性问题。另外,双方团队积累了丰富查询优化经验,共享经验更有利于 Clickhouse 性能极致提升。
微信跟腾讯云数据仓库 Clickhouse 的合作,从今年3月份开始,在验证期小规模试用 ClickHouse 后,业务一直在快速增长,双方开始共建进行稳定性和性能上的优化。主要做了两件事:一个是建立了整个 ClickHouse OLAP 的生态,另外一个是做了探索出贴近业务的查询优化方法。
三、共建 ClickHouse OLAP 的生态
要想比较好地解决 ClickHouse 易用性和稳定性,需要生态支撑,整体的生态方案有以下几个重要的部分:
1.QueryServer:数据网关,负责智能缓存,大查询拦截,限流;
2.Sinker:离线/在线高性能接入层,负责削峰、hash 路由,流量优先级,写入控频;
3.OP-Manager:负责集群管理、数据均衡,容灾切换、数据迁移;
4. Monitor:负责监控报警,亚健康检测,查询健康度分析,可与 Manager 联动;
微信WeOLAP团队和腾讯云重点在以下方面进行了合作攻坚:
1.高性能接入:微信的吞吐达到了十亿级别,实时接入方面,通过令牌、反压的方案,比较好地解决了流量洪峰的问题。另外通过Hash 路由接入,使数据落地了之后可直接做 Join,无需 shuffle 实现更快 Join 查询,在接入上也实现了精确一次。离线同步方案上,微信跟大多数业界的做法基本上一致,在通过预构 Merge 成建成 Part,再送到线上的服务节点,这其实是种读写分离的思想,更便于满足高一致性、高吞吐的场景要求。
2. 极致的查询优化:ClickHouse 整个的设计哲学,要求在特定的场景下,采用特定的语法,才能得到最极致的性能。为解决 ClickHouse 使用门槛高的问题,微信把相应的优化经验落地到内部 BI 平台上,沉淀到平台后,使得小白用户都可以方便使用 ClickHouse。通过一系列优化手段,在直播、视频号等多个 Case 实现10倍以上性能提升。
基于共建的 ClickHouse 生态,在微信有以下的典型应用场景:
1. BI 分析/看板:由于科学探索是随机的,很难通过预构建的方式来解决,之前用 Hadoop 的生态只能实现小时到分钟的级别。目前 ClickHouse 优化完之后,在单表万亿的数据量下,大多数的查询,P95在5秒以内。数据科学家现在想做一个验证,非常快就可以实现。
2. A/B 实验平台:早期做 A/B 实验的时候,前一天晚上要把所有的实验统计结果,预先聚合好,第二天才能查询实验结果。在单表数据量级千亿/天、大表实时 Join 的场景下,微信前后经历了几个方案,实现了近50倍的性能提升。从离线到实时分析的飞跃,使得P95响应<3S,A/B 实验结论更加准确,实验周期更短 ,模型验证更快。
3. 实时特征计算:虽然大家普遍认为 ClickHouse 不太擅长解决实时相关的问题,但最终通过优化,可以做到扫描量数十亿,全链路时延<3秒,P95响应近1秒。
四、性能的显著提升
目前,微信当前规模千台,数据量 PB 级,每天的查询量上百万,单集群 TPS 达到了亿级,而查询耗时均值仅需秒级返回。ClickHouse OLAP 的生态相对于之前的 Hadoop 生态,性能提升了10倍以上,通过流批一体提供更稳定可靠的服务,使得业务决策更迅速,实验结论更准确。
五、共建存算分离的云原生数仓
ClickHouse 原始的设计和 Shard-Nothing 的架构,无法很好地实现秒级伸缩与 Join 的场景;因此下一个微信和腾讯云数据仓库 ClickHouse 的共建目标,是实现存算分离的云原生数仓:
1.弹性扩容:秒级弹性能力,用户只为使用付费,实现高峰查询更快,低峰成本更省;
2.稳定性:无 ZK 瓶颈,读写易分离,异地容灾
3.易运维:数据容易均衡,存储无状态;
4. 功能全:专注于查询优化与Cache策略、支持高效多表 Join;
存算分离的云原生数仓能力,明年将会在腾讯云官网上线,敬请期待!
本文章由微信技术架构部-WeOLAP团队出品,「WeOLAP」专注于用前沿大数据技术解决微信海量数据高性能查询问题。
腾讯云数据仓库 Clickhouse 10元新客体验活动火爆进行中↓↓
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )