爱驰汽车正在开发个性化AI助手等功能,为用户提供“千人千面”的出行体验。浪潮AIStation人工智能开发平台助力爱驰汽车,将AI计算资源利用率提高到90%以上,减少了运维人员50%的工作量;开发人员每天可完成的训练任务数量增加了近70%,模型开发周期大幅缩短,加速了个性化驾驶AI助手等创新AI应用落地。
爱驰汽车打造AI个性化驾驶
作为我国智能电动汽车冲出的一匹黑马,爱驰汽车正在将AI技术应用于车载个性化助手、车载智能语音交互、车载机器人、车载驾驶员和乘员检测关怀等系统和功能中,并在量产车上落地应用,为用户提供体贴入微的个性化关怀。
爱驰U5是业内首款已量产的搭载了个性化AI助手的智能电动汽车,实现了车载助手“个人千面”。用户只需上传任意一张亲友的照片和一段语音,就能定制一个与其外形相似、可进行个性化语音播报和语音对话的专属虚拟伙伴,在车内也能拥有亲友陪伴在身边的温暖体验。
在汽车行驶过程中,爱驰AI助手会持续提供贴心关怀,当驾驶员出现不规范驾驶、疲劳驾驶、分神等行为时,TA会发出语音警示进行提醒;当车内有儿童哭闹,TA能够立刻辨别表情和声音,及时播放孩子喜欢的音乐、故事,甚至他自己大笑的声音来进行安抚。
爱驰汽车AI助手开发面临计算力挑战
以有温度的感情陪伴助手为目标,爱驰AI团队在与用户关联最紧密的人机交互上开展深入的研究和技术探索,包括语音识别、人机对话、个性化推荐等。训练相关的 学习模型不仅需要海量数据,还需要高性能的计算资源。以语音识别模型为例,至少需要1000个小时以上的训练数据,如果按每条数据平均4秒时长计算,数据量在90万条以上,需要4张V100 GPU卡训练一个星期。
为了满足AI研发创新对计算力的需求,爱驰汽车采用了浪潮AGX-2训练服务器集群,提供给数百人的人工智能开发团队使用,进行图像、NLP、语音、AR/VR等领域的研发。AGX-2在2U空间内高速互联集成8颗最高性能V100 GPU加速器,是业界计算密度最强的AI服务器。通过GPU加速,工作效率有了很大的提升。
但是随着业务需求和开发任务的增加,资源不足的矛盾逐渐凸显。计算资源依靠管理员手工标记GPU使用情况,无法及时了解资源的利用率,运维成本很高。尤其是开发人员提交并行任务时需要协调资源,更增加了系统管理员的工作难度。
此外,分散式的数据管理影响工作效率,不同业务开发人员开发所需要数据集不同,存在数据冲突和数据安全问题。音频和图像等数据集一般都有几百GB,处理起来费时费力。同时单台机器创建多个AI框架,开发环境相互影响,GPU卡多人同时使用导致相互抢占资源。
日训练任务多70%!AIStation提速爱驰汽车AI助手开发
浪潮AIStation是面向AI企业开发场景的人工智能资源平台,通过整合计算资源、数据资源以及AI开发环境,实现了AI 计算资源统一分配调度、训练数据集中管理与加速、AI模型流程化开发训练,为爱驰汽车的AI开发团队构建了敏捷高效的一体化开发平台。
AIStation提供资源统一管理、监控和运维。将计算资源全部集中池化管理,系统管理员通过可视化界面统一监控计算资源,实时了解CPU/GPU/存储的使用情况、利用率情况和性能表现,以及用户的训练任务规模和数量,降低了运维难度和工作量。
AIStation支持数据协同管理。一方面可帮助开发人员精细化地管理数据,让开发人员根据业务需求对数据进行保密或共享,在保护数据安全性的同时也能实现协作开发。另一方面,缓存策略可加快训练速度,数据集可提前预加载到本地计算节点中,减少网络IO对训练速度的影响。
考虑用户的使用习惯,AIStation提供开发环境共享可见,提高资源利用率。内置TensorFlow、PyTorch、MxNet、Caffe等AI软件栈,同时兼容ngc、dockerhub等开源镜像,开发人员通过容器的形式秒级完成开发环境创建。内置Jupyter、Shell开发工具,以及本地开发工具vscode、pycharm,满足不同开发人员的使用习惯。同时为方便同业务组的人员共同协作,组内人员创建的开发环境相互可见,并可进入开发调试。还可以在开发环境中提交训练任务,减少了资源相互占用,提高了资源利用率。
使用浪潮AIStation人工智能开发平台后,爱驰汽车的AI计算资源利用率提高到90%以上,运维人员减少了50%的工作量。开发人员每天可完成的训练任务数量增加了近70%,模型开发周期大幅缩短,极大加快了爱驰汽车个性化驾驶AI助手等创新AI应用的开发进程。
随着爱驰智能汽车AI研发创新加速,浪潮AIStation将继续帮助爱驰汽车高效管理AI计算资源、数据与任务,提高模型训练效率,加速人工智能应用落地,为用户带来更多更强大的功能和更舒适更温暖的出行体验。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )