·人工智能11月23日 调研机构CB Insights日前发布的“AI状况”季度报告显示,与资本市场当前状况一致,AI的投资持续放缓。自上季度以来,AI初创公司的总投资下降了31%,降到2020年第三季度以来的最低水平。大型融资(1亿美元以上)与上季度相比下降39%,创下9个季度以来新低。
尽管AI融资的停滞将会减缓该领域的发展,但它也促使投资者将更多注意力放在可能实现可持续发展的AI项目上。那么,当前大环境下AI赛道,呈现出怎样的生存发展趋势及投资之道呢?
AI的商业模式
AI初创公司是一个模糊的术语,通常适用于所有类型的公司,其范围从专注于提供AI工具(例如MLOps、预测分析工具、无代码/低代码模型开发)到在产品中使用AI的公司(例如使用机器学习预测风险的保险科技公司)。
然而,有一些因素决定了围绕AI和机器学习形成的商业模式的成功。以下是其产品的一些共同原则:
1、产品/市场的契合度:AI产品必须解决未解决的问题,或者在现有的解决方案上提供足够的附加值。
2、增长策略:必须有可扩展的渠道,让产品向目标用户传递其价值(例如付费广告以及与现有应用的整合)。这些渠道必须是防御性的,并使竞争对手难以抢占市场份额。
3、目标市场:投资者希望获得投资回报。其产品必须有一个相当大的市场才能增长并达到目标估值。如果产品太小众,很少有人问津,那么投资者也不会有兴趣为其提供资金。
除了上述原则,使用AI和机器学习的产品还必须解决一些其他问题:
1、训练数据:产品团队需要有足够的高质量数据来训练和测试其模型。在某些情况下,这些数据很容易获得(例如公共数据集和企业数据库中的现有数据);在其他方面则比较难以获得(例如健康数据)。对于某些应用,数据在不同的地理区域和受众之间可能存在细微差别,这需要它们自己进行数据收集工作。
2、持续改进:AI和机器学习模型需要随着世界的变化而不断更新。在部署机器学习模型之后,产品团队必须有持续收集数据以更新和改进模型的策略。这种不断的改进也加强了产品对竞争对手的防御能力。
本着这些原则,根据CB Insights公司的调查报告,需要了解在经济低迷的情况下,AI初创公司是否存在为其AI计划吸引资金的模式。
逆势实现早期融资的AI项目
AI行业早期融资的平均规模一直稳定在300万美元左右。相比之下,中期和后期的交易规模季度环比分别下降了15%和53%。但早期交易的数量已经减少,这意味着AI初创公司将更难为他们的产品创意找到投资。
在CB Insights的报告中提到的种子资金和天使交易中,以色列AI初创厂商Voyantis公在7月获得了1900万美元的资金,用于开发其预测增长平台。
如今的广告环境发生了变化,对用户数据和隐私的规定更加严格,Voyantis致力于解决营销人员面临的这些问题。例如,苹果公司最近在iOS系统中添加了一个功能,允许用户阻止广告商收集他们的设备ID。由于没有用户的详细数据,之前基于规则的广告活动只能提供较差的结果,这将增加每个用户获取成本(CAC)。Voyantis使用机器学习来预测用户行为和终身价值,有助于做出明智的决策,并提高营销活动的投资回报率。
另一家总部位于以色列的生物技术初创厂商Eleven Therapeutics于今年8月获得了2200万美元的种子资金。其专注于RNA治疗,这一领域近年来备受关注,尤其是在新冠疫情蔓延期间。
该公司正在开发一个 学习框架,用于“生成siRNA分子活性分布的功能数据”。关于该公司的AI技术并没有太多信息,但这是一个有大量可能的市场空间,其财务支持者包括比尔及梅琳达·盖茨基金会。
总部位于美国的初创厂商Spice AI在今年9月获得了1400万美元的种子资金,正在为创建AI驱动的Web3应用程序构建数字基础设施。有趣的是,在加密初创行业境况比其他行业糟糕的时候,这家公司却成功地吸引了投资。
这家公司有三点值得注意:首先,它正在创建数据工程基础设施,以索引主要区块链上的现有数据,这意味着它在获取数据方面没有任何重大障碍。其次,其创始人是微软Azure的资深人士,包括首席技术官Mark Russinovich以及GitHub(2018年被微软收购)的前任和现任CEO。正因为拥有如此知名度的行业人物,即使在最困难的时候,该公司也更容易吸引投资。第三,区块链数据工程在很大程度上是一个尚未解决的问题,随着行业的成熟,Web3公司肯定会面临这个问题,因此这可以被认为是Web3风险较低的项目之一。
谁在AI领域获得了巨额投资?
在2022年第三季度获得巨额融资的初创公司中,美国初创企业Afresh在今年8月获得了1.15亿美元的B轮融资。该公司使用机器学习帮助杂货店经营者减少高达25%的食物浪费,即平台跟踪新鲜食品的销售,帮助预测未来的客户需求。供应链团队可以使用该平台优化采购,用户可以直接使用该平台向供应商下订单,以减少食物浪费。
该公司已经在美国40个州拥有数千个客户,后续将利用新融资实现业务增长,将市场扩大到其他国家和地区,并增加新功能,以增加其产品的价值和市场覆盖率。
另一家获得巨额投资的公司是总部位于意大利的移动应用开发商Bending Spoons,该公司在今年9月份融资了3.4亿美元。Bending Spoons主要开发移动视频和照片编辑应用程序,这些应用使用机器学习来执行复杂的任务,例如背景删除、自动字幕和照片增强。
该公司的应用采用免费增值模式,用户可以免费使用基本功能,但如果使用高级功能必须付费。成立于2013年的Bending Spoons下载量已超过5亿次,年收入已持续数年超过1亿美元,下一步将利用新融资资金开发新产品和进行收购,向现有客户推销其新产品,并收集更多的数据,进一步扩大相对竞争对手的领先优势。
穿越周期的AI投资法则
如果深入研究接受融资的AI公司,就会获得更多信息,但注意以下几点:
1、坚持良好的产品原则:无论AI有多好,都需要一个能解决实际问题的产品,它比其他产品要好得多,而且采用的阻力更小。同时AI产品还需要有一个庞大的市场、扩张空间和可持续增长的清晰愿景。
2、B2B AI是最重要的:虽然AI驱动的应用为消费者提供了便利,但它们对企业的价值要大得多,尤其是在经济进入衰退的情况下。实施良好的AI可以减少资金浪费、优化推荐和自动化人工功能,所有这些都会影响AI公司的开支和收入。
3、在未解决的问题中寻找新的AI市场:在AI领域,已经建立的市场很难被征服,因为现有的AI公司已经拥有更好的数据集来训练他们的模型。而进入新市场更容易,成本更低,特别是如果能在竞争对手之前快速收集数据来训练机器学习模型。
4、降低获取数据的成本:在数据已经存在并有注释的地方寻找AI创意(例如,金融交易、销售历史、患者病历)。或者寻找生成模型所需数据的解决方案,以减少数据收集的需要。如果企业的应用需要一个新的管道来收集、清理和注释数据,那么将需要更多的时间、人才和资金,这在当前情况下很难实现。
5、拥有知名度高的创始人将会吸引更多投资:大型科技企业工作过的创始人更有可能为AI公司(例如Web3AI的数据基础设施)吸引更多和投资。
(文/Ben Dickson)
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )