人工智能时代下,猜拳还能公平吗?

文/陈根

如果说,有一种决策的方法能跨越文化、种族和地域的限制,那么除了抽签这种纯靠运气的方式,恐怕只剩下猜拳了。

猜拳被长久地使用在生活中不需要太多思考的决策里,一般认为,玩家获胜的概率应该是一样的,即恒定的30%左右,从长远来看,这使任意玩家同样有可能赢、平或输。这就是所谓的混合策略纳什均衡,在这种均衡中,每个参与者在每一轮中以相等的概率选择三个行动。

但事实可能并非如此,来自浙江大学的研究团队的研究发现,真正的玩家的策略看起来是随机的,但实际上是由可预测的模式组成的,狡猾的对手可以利用这些模式来获得重要的优势。

具体来说,研究团队开发了一个基于基于n-阶马尔可夫链的人工智能模型——Multi-AI ,这意味着Multi-AI 拥有记忆性,能够向前追溯最多 n 个历史状态并加以利用。研究人员将单个模型结合起来,应对人类玩家的不同性格和策略。

如果人类玩家连续胜利,就会促使 Multi-AI 转向选择其他人工智能模型的更优解。如果人类玩家连续失败,大概率会转换策略,或者打破之前的出拳规律,这时Multi-AI 也可以随之调整。

这意味着一种不同的博弈策略。即Multi-AI 模型更强调针对不同玩家之间的个性差异、出拳策略,来及时的进行调控,选取当下最适宜的博弈策略。

最终实验结果发现,在和52名人类玩家分别大战300回合之后,人工智能击败了95%的玩家。由于比赛规则是赢+2分,平+1分,输不得分,且参与者均知道获胜会获得金钱奖励,总分越高,赢的钱越多,因此玩家故意放水或者随便乱选的可能性极小。

即便如此,人工智能仍然大胜人类。在最悬殊的一场较量中,人工智能获得了198次胜利,55次平手,仅输了47次,胜率超过人类对手4倍。

当然,这项关于猜拳的最新研究,成果不仅仅是一个很厉害的猜拳人工智能,还是一个很厉害的循环制衡模型分析师,这意味着人类的竞争行为确实有规律可循,而通过使用适当的简单模型就能利用这些规律。研究人员认为,该人工智能模型未来有望拓展到其他博弈场景,比如预测竞争对手的下一步举动,规划更有效的竞选策略,或者制定更有利的定价方案等等。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2020-09-04
人工智能时代下,猜拳还能公平吗?
文/陈根如果说,有一种决策的方法能跨越文化、种族和地域的限制,那么除了抽签这种纯靠运气的方式,恐怕只剩下猜拳了。

长按扫码 阅读全文

Baidu
map