KDD 2020最佳论文奖出炉!谷歌、北航获奖

第 26 届 ACM SIGKDD 知识发现和数据挖掘会议(KDD 2020)已于太平洋标准时间 8 月 23 日 - 27 日以虚拟线上方式召开。今年 KDD 收集了 338 篇论文(研究和应用轨道),34 个研讨会,45 个教程(讲座和实践),使其成为计算机科学中最大的应用研究会议之一。

在继时间检验奖,新星奖,创新奖,论文奖,服务奖等奖项公布之后,最佳论文奖也已出炉,其中最佳论文奖由谷歌研究院的 Walid Krichene 和 Steffen Rendle 摘得,最佳学生论文奖由杜克大学的 Ang Li、Huanrui Yang、陈怡然和北航段逸骁、杨建磊获得。

最佳论文奖

最佳论文奖由来自谷歌研究院的 Walid Krichene 和 Steffen Rendle 获得,获奖题目为《On Sampled Metrics for Item Recommendation》

简介:项目推荐的任务需要在给定上下文的情况下对大量的项目进行排序。项目推荐算法是使用依赖于相关项目位置的排名指标来评估的。为了加速度量的计算,最近的工作经常使用抽样的度量,其中只有一组较小的随机项和相关项被排序。

本文对抽样指标进行了更详细的研究,发现它们与精确的度量值不一致,因为它们没有保留相关的语句,例如,说推荐者 A 优于 B 时甚至连期望值也没有。而且,抽样规模越小,指标之间的差异就越小,另外对于非常小的抽样规模,所有指标都会坍缩为 AUC 度量。

作者证明了通过应用一个修正项来提高抽样指标的性能是可行的:通过最小化不同的标准,如偏差或均方误差。最后,对原始抽样指标及其修正变量进行了实证评估。综上所述,作者建议在度量计算中应避免抽样,但是如果实验研究需要抽样,那么作者所提出的修正项可以提高估计的质量。

Walid Krichene

Walid Krichene 是谷歌研究所激光小组的成员,从事机器学习和推荐。他还致力于开发使用连续时间和随机动力学的优化方法。他也是 Google 开源 ML 课程推荐系统课程的合著者,在 ML@ 资本。

Steffen Rendle

Steffen rendle 是谷歌的一位研究科学家。在此之前,他是德国康斯坦茨大学的助理教授。Steffen 的研究兴趣是使用因子分解模型进行大规模机器学习。他的研究获得了 2010 年 WWW 网站的最佳论文奖和 WSDM 2010 年的最佳学生论文奖。Steffen 将他的研究应用于各种机器学习竞赛,在 2009 年和 2013 年的 ECML 发现挑战赛中获奖。

123下一页>

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2020-08-26
KDD 2020最佳论文奖出炉!谷歌、北航获奖
第 26 届 ACM SIGKDD 知识发现和数据挖掘会议(KDD 2020)已于太平洋标准时间 8 月 23 日 - 27 日以虚拟线上方式召开。

长按扫码 阅读全文

Baidu
map