天元、MindSpore、计图、OneFlow……一连串国产开源 学习框架的相继问世,让中国的开源AI迎来了迟到的“暖春”。
8月15日的“2019中国电子学会科学技术奖”颁奖仪式上,百度自主研发的“飞桨产业级 学习技术与平台”,更是荣获2019年度中国电子学会科学技术奖科技进步一等奖。
国产开源 学习框架开始得到行业的认可。
早在2016年的时候,国内的开源AI还只有百度飞桨一股力量,不少开发者被迫在Google的TensorFlow和Facebook的PyTorch之间做选择。特别是在“断供华为”的阴影下, 学习框架是否会被“断奶”,一度成为外界热议的焦点。在过度依赖国外开源框架造成的不确定中,“框架自由”成了国内不少开发者的夙愿。
2020年国产的 学习框架逐渐填补了空白,可人工智能的“开源之战”也愈演愈烈,早已上升为争夺人工智能话语权的较量。中国需要的不仅是越来越多的参与者,还需要在世界舞台上拼刀法的撒手锏。
01 开源的自由与国界
关于 学习框架的价值,还要从算法开始说起。
在人工智能的三要素中,如果说数据是燃料、算力是发动机,算法就是催化剂,直接决定着发动机对燃料的利用率,也是 学习研究中的基本功。在 学习的初级阶段,每位研究者都要花大量的时间写算法。
学习框架的出现,大大降低了开发者入门的门槛,不再需要从零开始写一套机器学习的算法,可以直接使用框架中已有的模型进行组装,或者在已有模型的基础上训练自己的模型,让算法的规模化生产成为可能。
打一个比方的话:优秀的 学习框架给开发者的价值,可以让开发者在项目训练中告别手工时代,就像拖拉机之于农民,原先需要一锄头接着一锄头平整土地,自动化的拖拉机可以让一个人完成原来数十人的工作。
其实业界对 学习框架的价值早已形成了共识,争议在于“开源”二字。无论是Google的TensorFlow,还是Facebook的PyTorch,无不披着开源的外衣,在“开源自由”的互联网世界里,中国是否有必要推崇所谓的“国产”?
长江商学院经济学教授、人工智能与制度研究中心主任许成钢,曾经分享过这样一组数据:中国关注人工智能开源软件包的人数在2017年秋就超过了美国,但93%的中国研究者使用的是TensorFlow等美国企业提供的开源框架。
某种程度上说,这是一组相当恐怖的数据,芯片和开源框架分别代表了算力和算法,在芯片已经被国外卡脖子的局面下,倘若继续高度依赖国外的开源框架,算力和算法两大基石都受制于人,等同于彻底把游戏规则的制定权交到了美国手中。一旦游戏规则掌握在别人手里,中国永远都是缺少话语权的弱者。
当然,国内仍然有不少理想主义者为开源唱赞歌,一群工程师、科学家、法学家为了开源自由对抗执法部门的故事,时常出现在国内的舆论场中。但现实终究拗不过强权,一向以开源社区自居的GitHub,屡屡传出封禁伊朗、俄罗斯等国籍开发者的消息,开源背后的国界意识也是不争的事实。
况且中国并不缺少过度信奉开源的教训,典型的例子就是华为。在美国政府的封杀下,谷歌虽然照旧向华为开源了AOSP项目,可配套的GMS服务却把华为拒之门外,直接影响了华为手机在海外市场的销量。
开源 学习框架是否存在同样的隐忧?可能在枪响之前,我们永远都不知道下一个陷阱在哪里。
123下一页>(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )