在这篇文章中,我将向你展示如何编写一个检测猫脸的简单程序。在我的人脸检测帖子中,我演示了如何使用Python检测人脸。当我用图像测试代码时,我发现其中有些图像中有动物,但是我们创建的人脸检测模型并不能识别动物的面部,所以我想知道是否有一种方法可以在图像中检测动物的脸,于是我在互联网上做了一点研究,发现这是可能的,而且在Kaggle上找到了很多免费的数据集,里面有几百张图片。Kaggle是一个寻找免费数据集的好地方,他们也在组织数据科学竞赛,这是一个练习数据科学技能和向他人学习的好地方。不管怎样,回到我们的项目。我很高兴能在一个程序中结合人类和猫的面部检测模型,这样我们的机器可以学会区分人类和猫。这将是一个有趣的工作项目,我们开始吧!!库第一件事是文书工作。当你在机器学习项目中工作时,安装和导入库是必需的。我们将在这个项目中使用两个库,OpenCV和Pillow。OpenCV是一个高度优化的库,专注于实时应用程序。Pillow是一个强大的图像处理库。Pillow将作为“Pillow”安装,但是导入的时候使用PIL,它们是同一件事,别搞混了。OpenCV(opensourcecomputervision Library)是一个开源的计算机视觉和机器学习软件库。OpenCV旨在为计算机视觉应用提供一个通用的基础设施,并加速机器感知在商业产品中的应用。作为一个BSD授权产品,OpenCV使企业很容易使用和修改代码。安装过程非常简单和容易。在终端窗口中编写以下代码行:pip install opencv-python pillow安装完成后,我们可以将其导入程序。import cv2 from PIL import ImageOpenCV已经包含了许多预先训练过的人脸、眼睛、微笑等分类器,这些XML文件存储在GitHub文件夹中。我们将使用猫面部检测和人脸检测模型。以下是链接:猫脸:https://raw.githubusercontent.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalcatface_extended.xml人脸:https://raw.githubusercontent.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_default.xml如果你有帐户,你可以从Github下载XML文件;如果没有,可以从上面的链接复制代码并粘贴到文本编辑器中并保存它们,我把它们叫做“catface_detector.xml”和“humanface_detector.xml”。将文件保存到文件夹后,让我们将它们加载到程序中。# Load the cascades catface_cascade = cv2.CascadeClassifier('catface_detector.xml') humanface_cascade = cv2.CascadeClassifier('humanface_detector.xml')图像在这一步中,你将选择要在测试代码中的图像。确保你有至少两张图片来检查你的程序的准确性。这些图像可以同时有人和猫,或者只是其中一个。如果你很难找到一个免费的图片集,可以使用我在Kaggle上找到的免费数据集(https://www.kaggle.com/tongpython/cat-and-dog)。请随时下载和使用这个项目。以下是我将在我们的项目中使用的图像:
12下一页>(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )