核心观点:
1、英伟达市值超过英特尔,本质是GPU的通用算力得到业界认可。
2、英伟达通过投资的方式进行广泛战略布局,自动驾驶是重点领域。
3、对标英伟达,中国公司百花齐放,自动驾驶市场可以期待。
AI之光英伟达终于被资本市场承认,市值一度超越英特尔成为美国市值最大的芯片上市公司。
以双方最近一个完整财年数据对比(美国通用会计准则),英伟达2020财年全年收入109.2亿美元,收入同比下跌7%,净利润27.96亿美元,同比下跌32%;英特尔2019年财年营收719.65亿美元,同比增长2%,净利润210.48亿美元,与上一财年持平。
在财务数据均不占优的情况下,英伟达凭借什么赢得资本市场信任?我们以投资视角来看英伟达如何布局AI未来。
AI算力路口:通用计算的胜利
CPU和GPU在算力支撑上有明显的区别,CPU有高级功能,有复杂的逻辑控制和优化电路,而GPU有众多结构相对简单的计算单元和超长流水线。
CPU可以解一个方程组,GPU则可以同时进行大量的加减乘除运算,这种区别导致GPU更适合人工智能相关产品对大规模并行计算的需求。
2000年,CPU仍是学界依赖的算力提供方,但由于CPU在架构上的局限,计算支持单元有限,算力释放不彻底,学者和工程师开始尝试寻求通用计算(GPGPU)下的算力支持。
2006年,英伟达在GPGPU框架下推出Tesla架构,并在第二年推出CUDA系列编程环境,借助CUDA可以大大降低用GPU做通用计算的难度,为后续AI算力支撑打下基础。
2012年, 学习开山鼻祖之一的Geoff Hinton的学生Alex Krizhevsky,借助英伟达的GPU成功训练出了 卷积神经网络AlexNet,优秀的算力支撑让众多AI学者开始以CUDA为第一选择,也进一步导致人工智能业界认可英伟达在AI的地位。
不仅在底层技术有布局,早在2009年,英伟达就进入车联网,当时与大众奥迪合作,在新式导航系统中应用Tegra系列芯片,特斯拉也在早期车型中使用Tegra芯片,Model S就基于Tegra 3进行电动与车载娱乐系统开发。
随后IBM、Facebook、ARM等公司展开合作,以 学习、机器学习、训练神经网络等为方向,加快AI芯片开发工作,截至目前,英伟达GPU是全球大规模AI商用芯片提供商之一,产品广泛应用于车联网领域。
伴随自动驾驶市场崛起,英伟达以消费级芯片供应商身份,参与到车载芯片的市场争夺战中,叩开了AI算力的大门,除了业务布局外,英伟达几年间进行投资布局,投资和收购大量企业,进一步深入到AI产业中。
英伟达的投资版图
2013年至今,英伟达针对AI全产业链累计进行了20余次投资并购行为,平均每年3次,其在自动驾驶领域和大数据分别进行5次和7次投资,此外还投资了人工智能孵化器、2家AI医疗公司、1家机器学习平台、2家音频处理公司。覆盖了中国、中国、以色列、加拿大、匈牙利、日本多个国家与地区。
12下一页>(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )