英特尔宋继强:坚持科研的长期主义 推动AI向3.0时代跃迁

最近几天,新冠疫情在北京再次升级,使总体向好的国内抗疫形势变得严峻。刚刚重启的生产生活被再次打乱,我们或许在未来较长一段时间内都不得不面对防疫常态化这一现实。本周,我又开始切换到“云办公、云生活”的状态。远程办公、视频会议已成习惯,孩子的课业交给了在线教育平台,消费和娱乐的方式也变成了看网络直播、听云演唱会。在疫情这一特殊的场景下,一系列新型AI应用需求被全面激活,AI真正渗透到了我们日常生活的方方面面。

作为一个科技从业者,我深知这些AI新应用的爆发绝非一日之功。从量变到质变的过程,是长期的科研布局与数字化基础设施建设的结果。瞄准长远的目标与价值,坚持长期的科技研究,是我们面对“疫情”这样不确定事件时唯一确定的事情。这不仅需要前瞻性的视野与布局,还需要有不为眼前利益所动摇的决心与意志。

从AI的发展进程看,人类对于AI的探索已经持续了70多年。回望AI的发展历程,我们可以清晰地捕捉到几个关键的节点。AI第一波浪潮,是通过由人制定的各种规则去做理论性的推理。虽然在推理方面表现不俗,但仅限于几个严格定义的问题,且没有学习能力,无法处理不确定性问题。而真正令AI渐入佳境的,则源于由 学习所触发的AI第二波浪潮。互联网、移动互联网等所产生的海量数据,给机器提供了学习、挖掘和试错的对象,让系统得以自发地找到“规律”,作出预测、判断和决策。数据的增长,外加算力的提升以及基于 学习构建的算法演进,这三张“王牌”让一些典型的 学习应用达到甚至超越了人的能力。这使得越来越多的乐观主义者深信, 学习是极具价值且值得产业界大规模跟进的方向。

然而, 学习就是AI的终极答案吗?随着对于 学习的研究深入,我们发现还有一些问题亟待解决。首先,“能耗”是最大的挑战。有研究报告显示,采用服务器级别的CPU加上GPU集群去训练一个大型AI模型,其所消耗电力产生的碳排放量,相当于5辆美式轿车整个生命周期所消耗的碳排放量。试想,如果各行各业都沿用这样的AI计算模式,人类的生态环境将会遭到何等的破坏。然后,“数据量”是又一大挑战。目前的 学习过于依赖大数据,在一些小数据量的场景下, 学习使用会非常有限。AI应该像人类大脑那样,通过小数据进行自我学习。在训练过程中,如何在保证AI模型能力的情况下,大幅降低能耗并减少所需花费的时间和数据量?这是AI继续向前发展的重要方向。但现在看来,基于大规模GPU并行计算去加速 学习训练的方式,并不能满足这个条件。

一个真正的智能系统,应该是环境自适应性的“自然智能”。首先,它不仅能处理确定性的问题,还能处理不确定性问题。第二,它不仅能够做事,还必须是可解释的。第三,它不完全依靠大数据驱动,即便少量数据也可实现更高效能的持续学习。第四,它应具备高可靠性,或者说符合人类给它设定的伦理道德。这是我们对于AI技术下一发展阶段——AI 3.0时代的展望。

目前,我们正处于从AI 2.0到AI 3.0时代的转折点。那么,究竟什么有望成为穿透AI未来的“利刃”呢?从目前看,作为一种前沿的计算模式,神经拟态计算最有可能开辟出一条从AI 2.0到AI 3.0的崭新赛道。神经拟态计算,是在传统半导体工艺和芯片架构上的一种尝试和突破。它通过模拟人脑神经元的构造和神经元之间互联的机制,能在低功耗以及少量训练数据的条件下持续不断自我学习,大幅提高了能效比。显然,神经拟态计算的特点非常符合AI3.0的发展需求。因此,神经拟态计算也被寄予厚望,有可能在人类迈入下一代AI的进程中发挥重要作用。

英特尔是一家立足长远、推动底层技术创新的公司,以此来帮助客户取得商业应用上的成功。为此,我们不断对前沿技术领域加大研究,即便这些领域在短期内无法看到实际成效。围绕神经拟态计算,我们从很早就开始积极探索这一崭新的计算模式,并取得了令人瞩目的成就。英特尔的神经拟态计算芯片Loihi已经具备了嗅觉的能力,神经拟态系统Pohoiki Springs已经拥有1亿神经元的计算能力,这已经相当于一个小型哺乳动物的大脑。

当然,神经拟态计算还处于非常早期的阶段,要想将这项技术真正应用于AI,我们还有很长的路要走。但我相信,底层技术的创新必须坚持长期主义,长时间地专注于一个方向与赛道,以这种确定性去对抗发展过程中的一切不确定性,才有可能最终取得成功。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2020-06-19
英特尔宋继强:坚持科研的长期主义 推动AI向3.0时代跃迁
最近几天,新冠疫情在北京再次升级,使总体向好的国内抗疫形势变得严峻。刚刚重启的生产生活被再次打乱,我们或许在未来较长一段时间内都不得不面对防疫常态化这一现实。

长按扫码 阅读全文

Baidu
map