支付宝AI大幅提升细粒度图像分类识别精度:一眼看穿万物细微差异

近日,计算机视觉A类顶级会议CVPR 2020开幕在即, 由全球最大机器学习平台Kaggle承办的FGVC(Fine-Grained Visual Categorization,细粒度图像分类)全球挑战赛结果揭晓,支付宝天筭安全实验室夺冠,超越全球1316支顶尖计算机视觉团队。

Kaggle 2020-FGVC挑战赛官方排名

作为人工智能核心能力,计算机视觉对细粒度图像分类技术要求越来越高。只有让机器「看得」更细更准,机器的判断才能有所突破。细粒度图像分类针对的是更微观的物体类别,比如,不仅要识别出它是一只鸟,还要判断具体属于哪一类鸟,识别出车要判断它的款式等。

细粒度图像分类是计算机视觉领域极具挑战的方向。今年,围绕该方向Kaggle共发起六项任务,支付宝参加其中的患病植物图像分类。比赛考察AI视觉识别技术对苹果树叶子图片进行不同种类的疾病区分能力,在训练集1821张图像和测试集1821张图像中,完成高精确度的判别。

模型不仅可以准确的分类,还能通过热力图的方式较为准确地定位到患病区域

世界上有约37万种植物,不同植物的病因完全不同,但多数植物的病态外观和特征却非常相似。另一方面,采集拍摄中存在姿态、视角、光照、遮挡、背景干扰等影响因素,使分类更加具有难度。

支付宝天筭安全实验室使用的原创模型,是基于数据增强、知识蒸馏方法,实现在大量信息干扰下进行物体具像化特征识别,使细粒度识别精度大幅提升。支付宝是比赛中唯一使用知识蒸馏这种 学习方法的团队,在最终测试中,支付宝分数达0.98445,排名第一。

例如,生了病的两片树叶,同样出现了破损孔洞,在传统模型训练下,AI最多可以识别出它们都是苹果树的树叶,很难确定两个孔洞之间的区别,进而给出推断树叶究竟得的是哪两种疾病。而支付宝的AI模型通过明确识别关键是孔洞大小、数量、位置,以及周边是否有斑点,最终快速给出树叶由于化学药品滥用造成损伤的判断。

缺乏标准信息数据导致难以判别的核心痛点,在医疗、金融、客服等领域大量存在,意味着这项技术拥有广阔的应用空间。在支付宝交易纠纷、资金盗用、医疗保险报销等场景中,AI团队已经开始使用该技术方法,快速识别并进行更准确的风险预测,保障用户需求在安全环境中被满足。

人工智能是蚂蚁集团核心技术引擎之一,研究领域涵盖NLP、计算机视觉、智能风控、智能营销等,并在大规模分布式机器学习、 图学习、多方安全与隐私计算、博弈与对抗智能、多智能体、强化学习等方向取得突破。蚂蚁集团首席科学家漆远带领的全球化AI团队,相继在国际人工智能顶级会议NeurIPS、ICML 、AAAI等,发表近60篇高质量论文成果,申报了超200个专利。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2020-06-11
支付宝AI大幅提升细粒度图像分类识别精度:一眼看穿万物细微差异
近日,计算机视觉A类顶级会议CVPR 2020开幕在即, 由全球最大机器学习平台Kaggle承办的FGVC(Fine-Grained Visual Categorization,细粒度图像分类)全球挑

长按扫码 阅读全文

Baidu
map