简介
这个项目的基础是 学习和图像分类,目的是创建一个简单而有趣的石头剪刀布游戏。首先,这个项目是我在5月份的COVID19隔离期中无聊的产物,希望当你读到这个时,一切都恢复正常了。我的目的是通过这篇文章用简单的术语向初学者解释这个项目的基本原理。让我们开始吧!在构建任何类型的 学习应用程序时,有三个主要步骤:收集和处理数据建立一个合适的人工智能模型部署使用整个项目都引用了我的Github repo,并与之携手并进,所以请做好参考准备。
收集我们的数据
任何 学习模型的基础都是数据,任何一位机器学习工程师都会同意这一点,在ML中,数据远比算法本身重要。我们需要收集石头,布和剪刀的符号图像,我没有下载别人的数据并在上面进行训练,而是制作了自己的数据集,鼓励你也建立自己的数据集。之后尝试更改数据并重新训练模型,以查看数据对 学习模型究竟有怎样的影响。
PATH = os.getcwd()+'\'
cap = cv2.VideoCapture(0)
label = sys.argv[1]
SAVE_PATH = os.path.join(PATH, label)
try:
os.mkdir(SAVE_PATH)
except FileExistsError:
pass
ct = int(sys.argv[2])
maxCt = int(sys.argv[3])+1
print("Hit Space to Capture Image")
while True:
ret, frame = cap.read()
cv2.imshow('Get Data : '+label,frame[50:350,100:450])
if cv2.waitKey(1) & 0xFF == ord(' '):
cv2.imwrite(SAVE_PATH+'\'+label+'{}.jpg'.format(ct),frame[50:350,100:450])
print(SAVE_PATH+'\'+label+'{}.jpg Captured'.format(ct))
ct+=1
if ct >= maxCt:
break
cap.release()
cv2.destroyAllWindows()
123下一页>(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )