英特尔联手宾夕法尼亚大学 采用 “联邦学习”技术的AI识别脑肿瘤

英特尔和宾夕法尼亚大学佩雷尔曼医学院(宾夕法尼亚大学医学院)正在组建一个联盟,包含29家国际医疗和研究机构,使用一种叫做 “联邦学习”的隐私保护技术来训练可以识别脑肿瘤的人工智能模型。这项工作由美国国立卫生研究院(NIH)国家癌症研究所(NCI)的癌症研究信息技术(ITCR)项目资助,它将向宾夕法尼亚大学的首席研究员Spyridon Bakas博士提供研究资金,为期三年总计120万美元。

AI在脑肿瘤的早期检测方面大有可为,但要充分发挥全部潜力,将需要比任何一家医疗中心都要多的数据。借助英特尔软件和硬件以及一些英特尔顶尖人才的支持,我们正在与宾夕法尼亚大学和由29家协作的医疗中心组成的联盟展开合作,在保护敏感的患者数据的同时,促进脑肿瘤的识别。”–Jason Martin,英特尔研究院首席工程师

“机器学习训练需要大量和丰富多样的数据,这并不是某一单独的机构所能持有的,这点已被我们的科学界普遍认可。我们正在协调一个由29家相互协作的国际医疗和研究机构共同组成的联盟,该联盟能够使用包括”联邦学习”在内的隐私保护机器学习技术,将在此基础上训练最先进的AI医疗模型。今年,该联盟将开始开发识别脑肿瘤的算法,此算法的数据集来自于赛中大幅扩展的数据集版本。该联盟将允许医学研究人员访问比以往数量大很多的医疗数据,同时能够保护这些数据的安全。”- 宾夕法尼亚大学Spyridon Bakas博士

这是如何做到的呢?宾夕法尼亚大学医学院与29家来自美国、加拿大、英国、德国、荷兰、瑞士和印度的医疗和研究机构,是使用”联邦学习”的技术来实现的。这种分布式机器学习方式,可以使得机构组织能够在不共享患者数据的情况下进行 学习项目的协作。

去年,宾夕法尼亚大学医学院和英特尔率先,特别展示了”联邦学习”方法可以训练出一种模型,使其准确率达到传统无隐私保护训练准确率的99%以上。该论文最初在西班牙格拉纳达举行的2018年国际医学图像计算和计算机辅助干预会议(MICCAI)上发表。这项新工作将利用英特尔软件和硬件实现”联邦学习”,为模型和数据提供额外的隐私保护。

根据美国脑肿瘤协会(ABTA)的数据,今年将有近8万人被确诊患有脑肿瘤,其中儿童患者超过4600名。为了训练和建立一种检测脑肿瘤的模型,以帮助早期检测并获得更好的结果,研究人员需要获得大量相关的医学数据。然而,保持数据私密性并使数据受到保护至关重要,这正是采用英特尔技术的”联邦学习”的用武之地。通过这种方法,来自所有合作机构的研究人员将能够共同协作,构建和训练一种算法来检测脑肿瘤,同时保护敏感的医疗数据。

2020年,宾夕法尼亚大学医学院和 29 家国际医疗和研究机构将使用英特尔的”联邦学习”硬件和软件,在迄今为止最大的脑肿瘤数据集上进行训练来生成全新的具有最佳性能的AI模型, 而其中敏感的病患数据将单独保存在各个合作机构中。预计参与发起该联盟第一阶段工作的合作机构小组包括宾夕法尼亚大学医院、圣路易斯华盛顿大学、匹兹堡大学医疗中心、范德比尔特大学、皇后大学、慕尼黑技术大学、伯尔尼大学、伦敦国王学院和塔塔纪念医院等。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2020-05-26
英特尔联手宾夕法尼亚大学 采用 “联邦学习”技术的AI识别脑肿瘤
2020年,宾夕法尼亚大学医学院和 29 家国际医疗和研究机构将使用英特尔的”联邦学习”硬件和软件,在迄今为止最大的脑肿瘤数据集上进行训练来生成全新的具有最佳性

长按扫码 阅读全文

Baidu
map