当今应用较为成熟且广泛的智能技术有哪些?人脸识别算是一例。《麻省理工科技评论》曾将其列为2017年“十大突破性技术”之一。
不过,随着人脸识别技术的逐渐成熟,“反人脸识别”也频繁出现在公众视野之中。如今,仅用一张贴纸、一个纹身、一件特殊的T恤就能干扰人脸识别的新闻层出不穷。
对此,许多企业在进行人脸识别验证的时候都需要配合活体检测,以防被图片蒙混过关。然而,这一方式也可以通过动图来破解。在某宝就有许多商家提供身份认证活体检测的动图,能够做到点头、眨眼、张嘴、摇头等动作。另外,2019年的美国黑帽大会上,腾讯玄武实验室的安全人员就通过给“无意识”的人员戴上专门设计的眼镜,就能访问机主的iPhone并通过移动支付应用程序向他们自己转账。
除此以外,人们对对抗样本的关注度也逐渐攀升。所谓对抗样本,就是将噪声引入正常数据样本,并导致人脸识别模型的识别出现错误。对抗样本使得 学习模型的正确率严重下降,对现有模型提出了挑战,也对攻防提出了新要求。
从上述情况可以看出,人脸识别技术有很大的脆弱性,不仅易被破解,也容易让垃圾样本通过识别分类系统。
这显示了人脸识别技术存在的风险。近几年,兜售人脸信息、人脸数据泄露等新闻并不罕见,这些数据若被有心人利用,再配合一些“打包”出售的辅助数据,就可以伪造某人的视频资料,从而盗取资金,乃至从事非法活动。
在人脸识别的帮助下,近年来警方破获了许多案件,若不法分子也利用反人脸识别技术隐藏,将对案件的破获产生不利影响。
当然,这些技术的出现并非完全是坏事。如今人脸识别技术较为普遍,无论是街头巷尾的摄像头,还是人人随身携带的手机,人们很难完全避开被识别,而信息保护也无法做到万无一失,反人脸识别技术若运用得当,就可以为个人隐私提供保护。
既然如此,运用人脸识别的系统还是否可靠?
实际上,在安全级别要求较高的网络系统,人脸识别并非唯一认证手段,而是配合虹膜识别、静脉识别、密码等其他手段进行验证。系统设计者应当充分考虑应用场景的需求,做到即便捷又安全。
而人脸识别技术用于追逃时,不仅应该考虑非目标群体的隐私保护,也应该进行多线索追踪和多元取证,不能盲目依赖人脸识别技术。
在信息化的现代,人们分享的每一张照片、每一个视频,都存在被非法利用的可能,因此当自身利益受到侵害时,应该勇敢地拿起法律武器,及时向公安机关进行举报,维护自己的合法权益。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )