人工智能寒冬论不绝于耳,AI发展如何?

和前几年一样,看衰AI行业前景的言论最近又此起彼伏。难道真如该观点支持者们所说的那样,”投资额减少、关注度下滑,AI寒冬将至?”

过去几年来,经过没日没夜的加班,我从一位AI菜鸟变成了一位AI老鸟。我从技术、运营同事们接手过来的产品需求,也逐渐由人脸识别、变为智能客服、智能质检、证件识别等细分需求。应用场景越来越垂直,应用范围越来越广泛。

AI 寒冬论,可以一边歇歇了。

回到正题,作为AI项目组的一位产品经理,我们就不重点讨论AI 到底有没有进入寒冬的问题,今天主要和大家分享一下在 AI 公司做产品经理的一些心得体会。

从互联网产品经理转型为AI产品经理,在这一过程我经历了从app的手机端交互设计,到让机器多模式与人交流的设计;2C到2B再到同时兼顾B端C端的转变;产品整理需求文档就能过需求,排开发,到学会去考虑技术边界/环境影响等因素,才能着手设计需求的转变……一路走来痛并快乐着。

结合几年AI项目实践经验,谈谈AI产品经理在具体工作中如何考虑产品设计,给大家分享6点心得。

体验层上包括:

技术边界VS业务目标;应用场景;教育成本;B端C端兼顾另外还有需要在设计架构是考虑的⑤设计兜底方案、⑥引擎接入的灵活性。

一、技术边界VS业务目标

在一定的阶段,当技术无法以预期的方式满足产品需求时,AI产品经理要做的事情就是在了解技术边界的前提下,提供最适合的产品解决方案以达到业务目标。

“准确回答用户咨询的问题”是智能客服产品的核心诉求,如何更准确的为用户提供解决方案呢?自然语言处理(NLP)技术并不能保证百分百精准理解客户的意图,AI产品经理需要考虑在这样的前提下,怎样设计智能客服产品。

“推荐答案”成为解决这一问题的设计方案。在无法准确判定用户的意图时,机器人会根据计算,在给出得分最高答案同时,将与客户问题意图相近的“推荐问题”根据计算分数从搞到排序展示,提供给用户更多选择,已达到解决用户咨询问题的目的。

目前的人脸识别技术也无法保证100%过滤各类风险,比如:视频供给、照片攻击,比如双胞胎。于是设计了“异步审核”策略,在人脸比对和活体检测有风险时,便会将采用异步审核流程,用人工检测的方式保证通过率和准确率,保证用户体验,降低业务风险。

一个技术落地,AI产品经理除了需要像互联网产品经理先确认核心需求,但更多的时间精力要用来思考就AI技术的情况,如何使用优秀的可执行的产品方案来代替大量的数据和时间投入,尽快从无到有的上线初代产品研发,在迭代中提升。毕竟让模型跑起来,在实际的业务场景中看到AI带来的价值才是产品追求的根本。

二、评估场景因素

当产品初步方案确认后,需要对影响算法正常运行的场景因素进行分析,是否充分评估各类会影响结果的场景因素,决定了产品真正落地的速度。

很多人吐槽过刷脸要求的复杂又难理解,不能戴黑框、光线不能太强、注意避开侧面光、逆光会影响通过。但其实是否能为用户提供更具指导性的告警是考验AI产品经理能力的重要维度。符合核身条件的光线检测、外部噪音检测、出现多张人脸时提示等,都需要在研发过程中尽充分挖掘,并进行合理的告警分类,考虑是否能用技术手段解决,比如将人脸是否满足检测条件放到前端。

同样,在身份证识别的场景中,金融行业这类对安全要求较高的行业,在证件伪造上都属于零容忍,证件识别除了来基本字段的准确率,误检率、召回率等关键数据,还需要考虑怎么对遮挡、缺角、过期等情况导致的伪造证件进行识别。足够丰富多样且精准的告警码,才能满足产品需求,为后续商业化提供技术亮点的支持。

由于目前硬件和算法的种种限制,为了尽量提升用户体验,AI产品经理需要挖掘外部环境可能导致的失败原因,反推算法同事给出更多维度更细颗粒的错误反馈,以便为用户提供清晰的操作指导,提升用户满意度。

三、产品使用的教育成本

AI产品对环境、用户配合度的要求,带来的一个新的问题:“怎样快速直观的教会用户使用”,如果用户不会用、不能用,对产品的落地和推广会带来负面影响。

比如:智能音箱、智能车载设备的兴起,在做软硬一体产品设计的过程中,由于对话是日常人们已经非常熟悉的场景,如何设计自然、“像和真人一样”交谈的交互,成为AI产品在设计过程中的重点及难点。

例如:用户在初期面对智能音箱产品时可能会一脸茫然,“我在干什么?”,“我要做什么?”,这时候通过屏幕显示的配合(有屏音箱设计)让用户对产品的功能有所了解,或者通过音箱主动交互告知用户“你可以这么问我”,“我对这些技能擅长”是产品设计中细致的考量。

再比如:如果音箱一直在听我们说话,将收录非常多杂乱无章的信息,使得AI系统没有办法很好的理解谁在说话,说了什么,往往需要用户每次与音箱交互时都唤醒。AI在后台被唤醒了,用户是怎么知道的呢?

在我们日常生活中,如果有人对我们说话,往往会叫我们名字,我们往往回复“我在~”。仿照这样的方式,我们对音箱的设计通过灯关不同颜色的反馈或者语音应答,告诉用户音箱被唤醒了,正在等待你说话。

另外,如果每次都唤醒,会让用户很烦很累,在一些连续交互的过程中,可以打破每次唤醒的魔咒,使得AI音箱一直在听用户所说的话。那这时候怎么让用户在这两种不同的模式间平缓切换,细致的对话设计就很重要。

与互联网产品不同,AI产品经理需要广泛涉猎不同行业不同地域的操作习惯,借鉴硬件、软件行业的优秀的交互,不断总结,思考更为轻松、自然、平顺的产品体验。

12下一页>

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2019-04-16
人工智能寒冬论不绝于耳,AI发展如何?
和前几年一样,看衰AI行业前景的言论最近又此起彼伏。难道真如该观点支持者们所说的那样,”投资额减少、关注度下滑,AI寒冬将至?”过去几年来,经过没日没夜的加班,我从一位AI菜鸟变成了一位AI老鸟。

长按扫码 阅读全文

Baidu
map