初识MapReduce的应用场景(附JAVA和Python代码)

从这篇文章开始,我会开始系统性地输出在大数据踩坑过程中的积累,后面会涉及到实战项目的具体操作,目前的规划是按照系列来更新,力争做到一个系列在5篇文章之内总结出最核心的干货,如果是涉及到理论方面的文章,会以画图的方式来讲解,如果是涉及到操作方面,会以实际的代码来演示。

这篇是MapReduce系列的第一篇,初识MapReduce的应用场景,在文章后面会有关于代码的演示。

Hadoop作为Apache旗下的一个以Java语言实现的分布式计算开源框架,其由两个部分组成,一个是分布式的文件系统HDFS,另一个是批处理计算框架MapReduce。这篇文章作为MapReduce系列的第一篇文章,会从MapReduce的产生背景、框架的计算流程、应用场景和演示Demo来讲解,主要是让大家对MapReduce的这个批计算框架有个初步的了解及简单的部署和使用。

目录

MapReduce的产生背景

MapReduce的计算流程

MapReduce的框架架构

MapReduce的生命周期

应用场景

演示Demo

MapReduce的产生背景

Google 在2004年的时候在 MapReduce: Simplified Data Processing on Large Clusters 这篇论文中提出了MapReduce 的功能特性和设计理念,设计MapReduce 的出发点就是为了解决如何把大问题分解成独立的小问题,再并行解决。例如,MapReduce的经典使用场景之一就是对一篇长文进行词频统计,统计过程就是先把文章分为一句一句,然后进行分割,最后进行词的数量统计。

MapReduce的架构图

MapReduce的架构图

这里的Client和TaskTracker我都使用一个来简化了,在实际中是会有很个Client和TaskTracker的。

我们来讲解下不同的组件作用

Client

Client的含义是指用户使用MapReduce程序通过Client来提交任务到Job Tracker上,同时用户也可以使用Client来查看一些作业的运行状态。

Job Tracker

这个负责的是资源监控和作业调度。JobTracker会监控着TaskTracker和作业的健康状况,会把失败的任务转移到其他节点上,同时也监控着任务的执行进度、资源使用量等情况,会把这些消息通知任务调度器,而调度器会在资源空闲的时候选择合适的任务来使用这些资源。

任务调度器是一个可插拔的模块,用户可以根据自己的需要来设计相对应的调度器。

TaskTracker

TaskTracker会周期性地通过Hearbeat来向Job Tracker汇报自己的资源使用情况和任务的运行进度。会接受来自于JobTaskcker的指令来执行操作(例如启动新任务、杀死任务之类的)。

在TaskTracker中通过的是slot来进行等量划分一个节点上资源量,只用Task获得slot的时候才有机会去运行。调度器的作用就是进行将空闲的slot分配给Task使用,可以配置slot的数量来进行限定Task上的并发度。

Task

Task分为Map Task和Reduce Task,在MapReduce中的 split 就是一个 Map Task,split 的大小可以设置的,由 mapred.max.spilt.size 参数来设置,默认是 Hadoop中的block的大小,在Hadoop 2.x中默认是128M,在Hadoop 1.x中默认是64M。

在Task中的设置可以这么设置,一般来讲,会把一个文件设置为一个split,如果是小文件,那么就会存在很多的Map Task,这是特别浪费资源的,如果split切割的数据块的量大,那么会导致跨节点去获取数据,这样也是消耗很多的系统资源的。

MapReduce的生命周期

MapReduce的生命周期

一共分为5个步骤:

作业的提交和初始化

由用户提交作业之前,需要先把文件上传到HDFS上,JobClient使用upload来加载关于打包好的jar包,JobClient会RPC创建一个JobInProcess来进行管理任务,并且创建一个TaskProcess来管理控制关于每一个Task。

JobTracker调度任务

JobTracker会调度和管理任务,一发现有空闲资源,会按照一个策略选择一个合适的任务来使用该资源。

任务调度器有两个点:一个是保证作业的顺利运行,如果有失败的任务时,会转移计算任务,另一个是如果某一个Task的计算结果落后于同一个Task的计算结果时,会启动另一个Task来做计算,最后去计算结果最块的那个。

任务运行环境

TaskTracker会为每一个Task来准备一个独立的JVM从而避免不同的Task在运行过程中的一些影响,同时也使用了操作系统来实现资源隔离防止Task滥用资源。

执行任务

每个Task的任务进度通过RPC来汇报给TaskTracker,再由TaskTracker汇报给JobTracker。

任务结束,写入输出的文件到HDFS中。

MapReduce 的计算流程

先来看一张图,系统地了解下 MapReduce 的运算流程。

MapReduce的运算流程

为了方便大家理解,重新画了一张新的图,演示的是关于如何进行把一个长句进行分割,最后进行词频的统计(已忽略掉标点符号)。

简单的实操例子

整个过程就是先读取文件,接着进行split切割,变成一个一个的词,然后进行 map task 任务,排列出所有词的统计量,接着 sorting 排序,按照字典序来排,接着就是进行 reduce task,进行了词频的汇总,最后一步就是输出为文件。例如图中的 spacedong 就出现了两次。

其中对应着的是 Hadoop Mapreduce 对外提供的五个可编程组件,分别是InputFormat、Mapper、Partitioner、Reduce和OutputFormat,后续的文章会详细讲解这几个组件。

用一句话简单地总结就是,Mapreduce的运算过程就是进行拆解-排序-汇总,解决的就是统计的问题,使用的思想就是分治的思想。

MapReduce的应用场景

MapReduce 的产生是为了把某些大的问题分解成小的问题,然后解决小问题后,大问题也就解决了。那么一般有什么样的场景会运用到这个呢?那可多了去,简单地列举几个经典的场景。

计算URL的访问频率

搜索引擎的使用中,会遇到大量的URL的访问,所以,可以使用 MapReduce 来进行统计,得出(URL,次数)结果,在后续的分析中可以使用。

倒排索引

Map 函数去分析文件格式是(词,文档号)的列表,Reduce 函数就分析这个(词,文档号),排序所有的文档号,输出(词,list(文档号)),这个就可以形成一个简单的倒排索引,是一种简单的算法跟踪词在文档中的位置。

Top K 问题

在各种的文档分析,或者是不同的场景中,经常会遇到关于 Top K 的问题,例如输出这篇文章的出现前5个最多的词汇。这个时候也可以使用 MapReduce来进行统计。

演示Demo

今天的代码演示从Python和Java两个版本的演示,Python版本的话便是不使用封装的包,Java版本的话则是使用了Hadoop的封装包。接下来便进行演示一个MapReduce的简单使用,如何进行词汇统计。

12下一页>

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2019-03-01
初识MapReduce的应用场景(附JAVA和Python代码)
从这篇文章开始,我会开始系统性地输出在大数据踩坑过程中的积累,后面会涉及到实战项目的具体操作,目前的规划是按照系列来更新,力争做到一个系列在5篇文章之内总结出最核心的干货,如果是涉及到理论方面的文章,

长按扫码 阅读全文

Baidu
map