今天,一则《Deepmind公布星际争霸2结果:AlphaStar以10:1战胜职业高手》一文,引发热议,但是其实在两年前,AI就与人类选手进行过星际争霸比赛。
2017年,世界首届人类与星际争霸AI对抗赛上,在接连两位学生选手败在AI手上后,韩国著名星际争霸选手、星际四皇“司令”Stork通过四场连胜将AI打败。他打败的AI包括了Facebook开发的CherryPi和来自澳大利亚、挪威和韩国的AI。
而在两年后的今天凌晨,DeepMind公布了其录制的AI在星际争霸2中与两位职业选手的比赛,AlphaStar以5:0的成绩战胜了2018年WSC奥斯汀站的亚军MaNa。除了此前比赛录像的展示外,AlphaStar还与MaNa现场对战一局,不过这局AlphaStar输给了人类选手。
DeepMind的研究联合负责人David Silver在赛后表示,“人工智能的历史被打上了许多重大的标杆性胜利的印记。我希望,未来的人们可能会回顾今天,或许会认为这是人工智能系统所能做的又向前迈进了一步。”
2013年,当时名不见经传的在DeepMind发表了一篇论文,内容是他们自己开发的AI游戏系统。论文中描述的计算网络并不是为了游戏而服务,反而是让一个AI系统自己去玩游戏。神奇的是,DeepMind的游戏系统可以在完全没有接触的前提下,通过对游戏的自我学习,自动的玩一系列初级电视游戏。
这个系统可以通过屏幕上面的图像和游戏中的分数是否上升下降,从而做出选择性的动作。虽然这个行为对人来来说难度不大,但对于机器学习来说却意义惊人。因为它涉及架设任务、建立人工精神网络、建立 学习模型和完善学习过程几个关键部分,并且需要大量的图形处理单来辅助。
星际争霸2这样的游戏其实比棋盘类游戏更难玩。在电子游戏中,人工智能无法通过观察每一块棋子的移动来计算下一步棋,它们必须实时做出反应。星际争霸2的不可预测性远大于围棋,玩家可以在同一时间会有300种基本动作可选择,即使在一个84x84像素的屏幕中,也会产生大约1亿个不同的动作,因此DeepMind要收集大量玩家的数据进行分析。
目前DeepMind要做的是让AI预测人类玩家下一步会做什么,AI在比赛之前仅仅数天的训练量,相当于职业选手训练200年之长,同时在对游戏单位的操作上,AI可以避免人类选手的微操失误,同时对未知地形进行勘探,在应对突发状况时,AI的会选择最好的处理方式。还有当人类玩家做了这些操作后要如何应对,通过局势判断下一步要干什么。暴雪已经承诺会从星际2的天梯中收集数十万个匿名录像帮助DeepMind训练,这样可以让AI做到序列预测和长期记忆。
AI的学习远远超过了我们的想象,无数企业也在不断加码人工智能,BAT、旷视科技、商汤科技、极链科技Video++、依图科技这些深耕人工智能领域的企业,也都在不断进行人工智能各方面的 学习。不得不感叹于AI在电子竞技项目进步的速度,人工智能下一步的目标,或许就是想向更多的专业游戏选手发出挑战。从人工智能首次被提出来,到现在逐渐进入我们的生活,未来的某一天,AI对于人类也将不再是一项触碰不到的技术。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )