原标题:AI芯片时代 技术之争永无止境
1492年哥伦布从西班牙巴罗斯港出发,一路西行发现了美洲。葡萄牙人达伽马南下非洲,绕过好望角到达了印度。不久之后,麦哲伦用了整整三年时间,完成了人类史上第一次环球航行,开启了人类历史上的大航海时代。大航海时代的到来,拉近了人类社会各文明之间的距离,对人类社会产生了深远的影响。
从深蓝到AlphaGo,人工智能逐渐走进人们的生活。人工智能也从一场技术革命,逐渐走向了产业落地。智能手机、智能家居设备、智能音箱……等设备,已经完全进入到人们的生活中。指纹识别、人脸识别、画面增强等实用人工智能的技术,也成为了人们日常使用电子设备必不可少的技术。
这些在我们日常生活中“见怪不怪”的人工智能技术越来越普遍,代表了人工智能产业在近年来的爆炸式发展,2018年更是被称为人工智能技术规模应用的拐点。而作为人工智能技术的核心,人工智能芯片也备受关注,引得国内外科技巨头纷纷布局。谷歌、苹果、微软、Facebook、英特尔、高通、英伟达、AMD、阿里巴巴等巨头纷纷开始自主研发人工智能芯片。
并且人工智能芯片的应用场景细分市场越来越多,专门为某些人工智能应用场景定制的芯片适用性明显高于通用芯片。这样的形势,给一些人工智能芯片的初创公司带来了机会。寒武纪芯片和地平线的人工智能视觉芯片、自动驾驶芯片等,就是初创公司在人工智能芯片领域取得成功的代表。
人工智能芯片大火的同时,已经呈现出三分天下的态势。FPGA、GPU和TPU芯片,已经在人工智能领域大规模应用。FPGA并不是新鲜的事物,而因为AI的火热的应用需求不断增强,FPGA正是作为一种AI芯片呈现在人们的面前。准确的说,不仅仅是芯片,因为它能够通过软件的方式定义,所以,更像是AI芯片领域的变形金刚。
而目前大多数人工智能企业青睐于GPU芯片,而TPU相对于GPU而言,采用8位低精度计算节省晶体管,对精度影响很小但是却可以大幅节约功耗。尤其是当大面积集成系统时,TPU不仅性能更强,功耗也会大幅低于GPU集成系统。由于芯片能力非常强大,谷歌使用了液冷散热技术,可以帮助TPU更好的为数据中心服务。
TPU全名为TensorProcessingUnit,是谷歌研发的一种神经网络训练的处理器,主要用于 学习、AI运算。谷歌在I/O大会上推出了自己的AI芯片——张量处理器TPU(第一代)。谷歌表示,尽管在一些应用上利用率很低,初代TPU平均比那时候的GPU或CPU快15~30倍,性能功耗比(TOPS/Watt)高出约30~80倍。
在第二代TPU里,每个TPU都包含了一个定制的高速网络,构成了一个谷歌称之为“TPU舱室”(TPUPOD)的机器学习超级计算机。一个TPU舱室包含64个第二代TPU,最高可提供多达11.5千万亿次浮点运算,内存400万兆字节,4倍快于当时市面上最好的32台GPU。
CloudTPU带来的最大好处,则是谷歌的开源机器学习框架TensorFlow。TensorFlow现在已经是Github最受欢迎的 学习开源项目,CloudTPU出现以后,开发人员和研究者使用高级API编程这些TPU,这样就可以更轻松地在CPU、GPU或CloudTPU上训练机器学习模型,而且只需很少的代码更改。
如果拿汽车类比,GPU是大巴车,适合多人同目标;FPGA是小轿车,能到任何地方,但得自己会开;而TPU是火车,只能在比公路少的多的铁轨上开,但开的飞快。人工智能还在快速发展,还处于在各个行业落地的过程中。这个阶段对GPU,FPGA和TPU都有需求。
毫无疑问,人工智能是当今时代的主旋律。在人工智能软件占据人们视线的同时,人工智能技术尤其是 学习,让各大公司都注意到必须要填补的计算力鸿沟。但其影响在更广泛的行业内渗透只是时间上的问题。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )