AI芯片技术架构的4种类型,哪种能笑到最后?

AI芯片产业生态

技术架构发展分为四个类型

01、通用类芯片

代表如GPU、FPGA

GPU:Graphics Processing Unit图形处理器

GPU原本需求大部分都来源于PC端大型游戏对图形处理的需求,现由于科技发展渐渐在移动端也慢慢崛起。

而做GPU的大佬正是英伟达NVIDIA,从游戏、数据中心到人工智能,市场对英伟达芯片的需求越来越大,在游戏业中甚至增加了对加密货币挖矿者用户的服务,等过去三年时间内,英伟达依靠自身在 GPU 方面的技术积累,搭上了人工智能发展的快车道,其股价也在三年内翻了10 倍。

英伟达GPU加速算法示意图

与股价上涨发生的,还有这家公司的转型,英伟达也正在经历从一个图形芯片公司到AI平台搭建者的转型,聚焦于底层计算,致力于搭建高效平台的战略,使英伟达在当下的技术革命中,占得了一席之地。

除了英伟达,还有AMD,ARM家的Mali,Imagination的PowerVR,Qualcomm的Adreno等

FPGA:Field-Programmable Gate Array现场可编程门阵列

它在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。

全球知名的FPGA生产厂商有:Altera, Xilinx,Actel , Lattice,Atmel

其中Altera作为世界老牌可编程逻辑器件的厂家,是可编程逻辑器件的发明者,开发软件MAX+PLUSII和QuartusII。Xilinx是FPGA的发明者,拥有世界一半以上的市场,提供90%的高端65nmFPGA产品,开发软件为ISE,其产品主要用于军用和宇航。

Altera和Xilinx主要生产一般用途FPGA,其主要产品采用RAM工艺。Actel主要提供非易失性FPGA,产品主要基于反熔丝工艺和FLASH工艺。

02、基于FPGA的半定制化芯片

代表如深鉴科技DPU、百度XPU等

DPU:Deep-Learning Processing Unit 学习处理器

Deephi Tech深鉴,一家位于北京的清华背景start-up,深鉴将其开发的基于FPGA的神经网络处理器称为DPU。

深鉴已经公开发布了两款DPU:亚里士多德架构和笛卡尔架构,分别针对CNN以及DNN/RNN。

百度也发布了XPU,这是一款256核、基于FPGA的云计算加速芯片,合作伙伴是赛思灵(Xilinx)。XPU的目标是在性能和效率之间实现平衡,并处理多样化的计算任务。

XPU的256个内核,集成了一个共享内存用于数据同步,所有内核都运行在600MHz

03、全定制化ASIC芯片

代表如TPU、寒武纪 Cambricon-1A等

ASIC:Application Specific Integrated Circuit

ASIC在集成电路界被认为是一种为专门目的而设计的集成电路。ASIC芯片技术发展迅速,目前ASIC芯片间的转发性能通常可达到1Gbs甚至更高,于是给交换矩阵提供了极好的物质基础。

TPU:Tensor Processing Unit Google 的张量处理器

TPU的架构框图

Google在2017年5月的开发者大会上正是公布了TPU2,又称Cloud TPU.相比于TPU1,TPU2既可以勇于training,又可以用于inferrence.TPU1实用了脉动阵列的流处理结构。

04、类脑计算芯片

代表如IBM TrueNorth、westwell、高通Zeroth等

类脑计算:是指借鉴大脑中进行信息处理的基本规律,在硬件实现与软件算法等多个层面,对于现有的计算体系与系统做出本质的变革,从而实现在计算能耗、计算能力与计算效率等诸多方面的大幅改进

TrueNorth:IBM 2014年发布的仿人脑芯片,在这个只有邮票大小的硅片上,集成了100万个“神经元”,256个“突触”,4096个并行分布的神经内核,用了54亿个晶体管,然而功耗却只有70mW。

TrueNorth芯片结构、功能、物理形态图

WestWell Lab:西井科技是一家专注研究Neuromorphic Engineering神经形态工程的类脑强人工智能商业公司,即模拟人脑神经元工作原理而制造出的芯片,它既具备人脑的学习能力,又具备强大的特定运算能力,仅需一块邮票大小的芯片,就能模仿人类大脑在短时间内处理海量的感官信息。

本人认为,以上4种技术架构的类型随着科技的发展不断最终将殊途同归,区别在于不同时期不同需求,这也是各个AI芯片创业公司为什么要进行卡位战的原因。但无论怎么发展,技术永远都是第一要义。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2018-09-11
AI芯片技术架构的4种类型,哪种能笑到最后?
AI芯片产业生态 技术架构发展分为四个类型 01、通用类芯片 代表如GPU、FPGAGPU:Graphics Processing Unit图形处理器GPU原本需求大部分都来源于PC端大型游戏对图形处

长按扫码 阅读全文

Baidu
map