人工智能之Q Learning算法

人工智能机器学习有关算法内容,请参见公众号“科技优化生活”之前相关文章。人工智能之机器学习主要有三大类:1)分类;2)回归;3)聚类。今天我们重点探讨一下Q Learning算法。 ^_^

通过前一篇TD-Learning时序差分(请参见人工智能(48)算法介绍,我们知道,TD-Learning时序差分是结合了动态规划DP蒙特卡洛MC(请参见人工智能(31))方法,并兼具两种算法的优点,是强化学习的中心

TD-learning时序差分大概分了6类。其中,策略行动价值qπ的off-policy时序差分学习方法: Q-Learning(单步),Double Q-Learning(单步)。今天重点介绍Q-Learning算法

Q Learning算法是由Watkins于1989年在其博士论文中提出,是强化学习发展的里程碑,也是目前应用最为广泛的强化学习算法。

Q Learning算法概念:

Q Learning算法是一种off-policy的强化学习算法,一种典型的与模型无关的算法,即其Q表的更新不同于选取动作时所遵循的策略,换句化说,Q表在更新的时候计算了下一个状态的最大价值,但是取那个最大值的时候所对应的行动不依赖于当前策略。

Q Learning始终是选择最优价值的行动,在实际项目中,Q Learning充满了冒险性,倾向于大胆尝试。

Q Learning算法下,目标是达到目标状态(Goal State)并获取最高收益,一旦到达目标状态,最终收益保持不变。因此,目标状态又称之为吸收态

Q Learning算法下的agent,不知道整体的环境,知道当前状态下可以选择哪些动作。通常,需要构建一个即时奖励矩阵R,用于表示从状态s到下一个状态s’的动作奖励值。由即时奖励矩阵R计算得出指导agent行动的Q矩阵

Q矩阵是agent的大脑

Q Learning算法本质

QLearning属于TD-Learning时序差分学习。同样,该算法结合了动态规划和蒙特卡罗MC算法,模拟(或者经历)一个情节,每行动一步(或多步)后,根据新状态的价值,来估计执行前的状态价值。

下面提到的Q-Learning是单步更新算法。

Q Learning算法描述:

Q-learning是一个突破性的算法。

利用下面公式进行off-policy学习,即用公式来表示Q-Learning中Q表的更新:

Q(St,At)←Q(St,At)+α[Rt+1+γmax Q(St+1,a)?Q(St,At)]

其中:

St: 当前状态state

At: 从当前状态下,采取的行动action

St+1:本次行动所产生的新一轮state

At+1: 次回action

Rt: 本次行动的奖励reward

γ为折扣因子,0<= γ<1,γ=0表示立即回报,γ趋于1表示将来回报,γ决定时间的远近对回报的影响程度,表示牺牲当前收益,换取长远收益的程度。将累计回报作为评价策略优劣的评估函数。当前的回报值以及以前的回报值都可以得到,但是后续状态的回报很难得到,因此累计回报就难以计算。而Q-learning用Q函数来代替累计回报作为评估函数,正好解决这个问题。

α为控制收敛的学习率,0< α<1。通过不断的尝试搜索空间,Q值会逐步趋近最佳值Q*

1Q-learning单步时序差分学习方法算法描述

Initialize Q(s,a),?s∈S,a∈A(s) arbitrarily, and Q(terminal, ˙)=0Repeat (for each episode):? Initialize S? Choose A from S using policy derived from Q (e.g. ??greedy)? Repeat (for each step of episode):?? Take action A, observe R,S′?? Q(S,A)←Q(S,A)+α[R+γmaxa Q(S‘,a)?Q(S,A)] ?? S←S′; ? Until S is terminal

每个episode是一个training session,且每一轮训练意义就是加强大脑,表现形式是agent的Q矩阵元素更新。当Q习得后,可以用Q矩阵来指引agent的行动。

Q-learning使用了max,会引起一个最大化偏差(Maximization Bias)问题。可以使用Double Q-learning可以消除这个问题。

2Double Q-learning单步时序差分学习方法算法描述

Initialize Q1(s,a) and Q2(s,a),?s∈S,a∈A(s) arbitrarilyInitialize Q1(terminal, ˙)=Q2(terminal, ˙)=0Repeat (for each episode):? Initialize S? Repeat (for each step of episode):?? Choose A from S using policy derived from Q1 and Q2 (e.g. ??greedy)?? Take action A, observe R,S′?? With 0.5 probability:??? Q1(S,A)←Q1(S,A)+α[R+γQ2(S′,argmax Q1(S′,a))?Q1(S,A)] ?? Else:??? Q2(S,A)←Q2(S,A)+α[R+γQ1(S′,argmax Q2(S′,a))?Q2(S,A)] ?? S←S′;? Until S is terminal

Double Q Learning算法本质上是将计算Q函数进行延迟,并不是得到一条样本就可以更新价值函数,而是一定的概率才可以更新。由原来的1条样本做到影响决策变为多条(至少两条)样本影响决策。

Q Learning理论基础:

QLearning理论基础如下:

1)蒙特卡罗方法

2)动态规划

3)信号系统

4)随机逼近

5)优化控制

Q Learning算法优点:

1)所需的参数少;

2)不需要环境的模型;

3)不局限于episode task;

4)可以采用离线的实现方式;

5)可以保证收敛到 qπ。

Q Learning算法缺点:

1) Q-learning使用了max,会引起一个最大化偏差问题;

2) 可能会出现更新速度慢;

3) 可能会出现预见能力不强。

注:使用Double Q-learning可以消除问题1);使用多步Q -learning可以消除问题2)和3)。

Q Learning算法应用:

从应用角度看,Q Learning应用领域与应用前景都是非常广阔的,目前主要应用于动态系统、机器人控制、工厂中学习最优操作工序以及学习棋类对弈等领域。

结语:

Q Learning一种典型的与模型无关的算法,它是由Watkins于1989年在其博士论文中提出,是强化学习发展的里程碑,也是目前应用最为广泛的强化学习算法。Q Learning始终是选择最优价值的行动,在实际项目中,Q Learning充满了冒险性,倾向于大胆尝试,属于TD-Learning时序差分学习。Q Learning算法已经被广泛应用于动态系统、机器人控制、工厂中学习最优操作工序以及学习棋类对弈等领域。

------以往文章推荐------

机器学习

学习

人工神经网络

决策树

随机森林

强化学习

迁移学习

遗传算法

朴素贝叶斯

支持向量机

蒙特卡罗方法

马尔科夫模型

Hopfield神经网络

回归模型

K邻近算法

卷积神经网络

受限玻尔兹曼机

循环神经网络

长短时记忆神经网络

Adaboost算法

ID3算法

CART算法

K-Means算法

Apriori算法

PCA算法

ICA算法

TD-Learning算法

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2018-06-18
人工智能之Q Learning算法
人工智能机器学习有关算法内容,请参见公众号“科技优化生活”之前相关文章。人工智能之机器学习主要有三大类:1)分类;2)回归;3)聚类。今天我们重点探讨一下Q Learning算法。

长按扫码 阅读全文

Baidu
map