谷歌I/O与中国造芯热:AI芯片的一体两面

5月10日晚,桑达尔·皮查伊在加州山景城主持了谷歌2018I/O开发者大会,这位被中国网友戏称为“劈柴哥”的Google CEO,一如往届向外界透露了谷歌前进的方向,而其中的重要一项,就是正式公布了自家AI芯片TPU的3.0版本。

距离中兴芯片危机仅一个月的时间,TUP 3.0版本的公布或将再次对“造芯热潮”的中国科技界带来刺激,掀起新一轮的“AI芯”热潮。然而,AI芯片真的能靠“舆论”这么造出来吗?

AI芯片:一切的基础

为什么说AI芯片是AI技术的基础?当AI技术进一步发展,所需要的信息和运算量会进一步提升,CPU已经无法提供更加庞大的算力,目前人们用GPU来代替CPU进行 学习,但为了考虑到算力膨胀和兼容性的问题,研发AI芯片已是大势所趋。

而且芯片作为高投入、高尖精的技术,又是底层硬件基础,如果严重依赖它人,AI公司本身会非常难受——就和今天的中兴一样,命门一掐,受制于人。因此众多互联网大佬都在自行研发AI芯片,除了谷歌还有亚马逊、苹果、Facebook等。

谷歌研发的TPU最早公布于2016年,2013年就有相关传言在进行研发了。与李世石和柯洁大战而名声大噪的AlphaGo就搭载了TPU。

AI芯片分为 学习和专用类,前者可以搭载在大量AI平台内,进行 学习和智能运算;后者用途则更加垂直,比如用于安防识别、智能家居、自动驾驶、云端运算,这也是目前AI芯片最为火热的四个落地场景。

但 学习AI芯片更加意义重大,一般是为 学习框架而设计,这意味着它对开源架构进行了优化,能让开发者更顺利、更快捷地开发出更多的AI应用,形成数目繁多、品类齐全的AI应用生态。此外,AI芯片与 学习框架的一体化意味着标准的建立,如果选择这款AI芯片的开发者越多,企业的AI护城河就越稳固,类似PC之于Windows。

用了我的芯片,在我的地盘你就得听我的。

中兴事件引爆了中国芯片的“大跃进”

由于半导体产业的先发优势,美国英伟达、英特尔、谷歌、AMD等企业的AI芯片产品一直是国内AI企业追赶和超越的对象。而在中美贸易摩擦导致的中兴芯片危机发生不久后,TPU3.0的发布也进一步催化了国内的造芯热度,相信接下来一段时间,对造芯追求的舆论将会掀起新的高潮。

其实在中兴事件到I/O发布会之前,各大网站的科技频道基本都被国内造芯的新闻刷屏:

4月19日,阿里公布自研芯片Ali-NPU消息

4月20日,阿里宣布全资收购AI芯片企业中天微

4月23日,Rokid宣布自研AI芯片将于6月26日亮相

4月27日,云天励飞正公布面向嵌入式端的边缘人工智能芯片IPU

5月3日,寒武纪发布首款云端智能芯片MLU100

5月11日,华为被爆麒麟980处理芯片将在今年下半年发布

5月11日,云知声宣布将在下周公布全球首款面向IoT的AI芯片

……

这个时间节点颇为耐人寻味,而且这些新闻大都有一个共同特点:数据列得一个比一个好看,实体芯片难见踪影;一边高调打爱国牌“在AI上不做下一个中兴”,一边普天盖地自我宣传。也难怪众多网友不买账,纷纷调侃这些企业有蹭热点之嫌。

但这也拦不住大企业纷纷倾力投入,同时更涌现一大票造芯创业者。凭心而论,在AI技术的浪潮下,AI芯片作为底层基础,战略意义可以说不言而喻,中兴事件也让人们看到了中国在这方面的短板。但做芯片,不能走炼钢铁那种大干快上的粗暴路线。

端前一分钟,芯片十年功

芯片这个东西,我们都觉得很常见,只要是个智能电子设备,都一定会搭载它,这就给老百姓一种错觉,认为这东西很多企业都能做。其实很多企业家也没看透这一点,觉得只要砸点钱,挖点人,花个两三年时间,就能出成果。

说有钱,市值两千多亿美金的英特尔够有钱吧?2016年,英特尔豪掷4.08亿美刀收购了一家明星AI创业公司Nervana,然后说要推出专用芯片——这大招一憋就是三年半,到现在连个芯片的影子都没见着。英特尔也没有把宝都押在Nervana身上,2015 年英特尔以 167 亿美元收购了芯片商Altera,2017 年英特尔以 153 亿美元收购拥有自动驾驶辅助系统及芯片方案的Mobileye……均是出手不菲,但与谷歌形成鲜明对比的是,英特尔的AI芯片与AI应用至今仍泛善可陈。

说到底,“买买买”的模式,在AI领域未必行得通。半导体产业链需要的是源源不断的资本、源源不断的技术投入,这一点已经得到了美日韩的验证。但AI芯片更需要一个完整的生态,底层芯片,中层系统,上层应用,缺一不可,退一万步说,就算芯片造出来了,如果没有形成应用生态,它也只是一个空中楼阁。

这一点阿里很像英特尔,都是“买买买”的模式。阿里这几年在AI领域的投资和收购动作频频,寒武纪和商汤科技背后都有马云爸爸的影子。但英特尔大举收购之后,面临的是旗下多条AI线互不兼容各自为政的困境,经过内部管理层多次洗牌,大量Nervana员工出走,甚至投奔了“死敌”Google,这也是AI芯片进展缓慢的原因。

除此之外,半导体产业的投资周期长,投资以后基本不用指望在短期内退出或者获得高利润回报,而且试错成本极高。英伟达、谷歌、AMD等真正拥有AI芯片的业界大佬,无一不是在五六年前就开始研发了——那时候人工智能概念还没现在这么火。然后现在很多初创企业突然冒出来说自己研发出来了AI芯片,再看看他们的创始日期,一水的“2015后”。

三年时间,后来居上,以小搏大,赶超欧美。这听起来是不是有点熟悉?

中国芯应该怎么造?

承载算力的芯片是人工智能发展的基石,是最重要的基础设施资源,特别是在终端侧对功耗、性能、稳定都有很高的要求。无论从国家战略、还是行业市场来看,都需要做AI芯片。

其实,中国真正埋首做AI芯片的公司还是有的,虽然难度很大,但是确实有人在勤勤勉勉地做。中科寒武纪就是一个例子,但是中科寒武纪的AI芯片离宣传的效果还是有一段距离,应用面较为狭窄,目前主要用于华为手机摄像头,进行图像运算,此外有部分应用于科大讯飞的翻译机,负责语言处理。相比外国巨头们AI芯片的泛用性,差距依然很远。

而从整个AI产业角度看,芯片并非一个孤立的硬件。就像前文说的,它同时也要结合 学习框架,以及AI应用生态,三者形成良性的循环。 学习框架相当于AI的操作系统,一颗专用的AI芯片能让 学习框架运转速度更快,也更兼容,吸引更多的开发者使用这样的操作平台,来产生更多的AI应用,当生态足够大,不愁吸引不到足够的用户。而一个完整且繁荣的生态架构,正是寒武纪们欠缺的。

因此,AI芯片布局不仅要看地基,还要着眼高层,还需要做好深耕五年十年甚至二十年的准备,这需要企业家拥有非凡的战略眼光和全面布局AI生态的勇气。

相反,如果只看到了中兴事件之后的民族情绪,随着全民造芯的大流在芯片上层层加码,而忽略了其他层次的构建,甚至还有“未见芯片先见性能”的冒进,恐怕吸引目光、呼唤投资的意义要更大一些,毕竟AI界的老大哥英伟达凭借其GPU产品收获了大量市场和口碑。在两年时间内,英伟达的股价股价涨了近8倍,今年二季度营收同比增长56%,公司市值超千亿美元大关。用AI芯片的概念作为股价驱动力,谁不眼红?

只是,这不免有点“天下熙熙皆为名来,天下攘攘皆为利往”的味道了。

(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )

赞助商
2018-05-15
谷歌I/O与中国造芯热:AI芯片的一体两面
5月10日晚,桑达尔·皮查伊在加州山景城主持了谷歌2018I/O开发者大会,这位被中国网友戏称为“劈柴哥”的Google CEO,一如往届向外界透露了谷歌前进的方向,而其中的重要一项,就是正式公布了自

长按扫码 阅读全文

Baidu
map