根据普利茅斯大学一个团队的最新研究,人工智能的发展可以帮助科学家预测其他行星上生命的可能性。该研究使用人工神经网络(ANNs)将行星分为五类,估计每种情况下的生命概率,这可以用于未来的星际探索任务。这项工作于4月4日由克里斯托弗·毕肖普先生在利物浦举行的欧洲天文与空间科学周(EWASS)上发表。人工神经网络是试图复制人脑学习方式的系统。它们是机器学习中使用的主要工具之一,尤其擅长识别复杂的模式,而这些模式对于生物大脑来说是非常复杂的。
这张合成图像显示了土星卫星泰坦的红外图像,取自美国宇航局的卡西尼号宇宙飞船。一些措施表明,泰坦拥有除地球以外的任何世界的最高可居性评级,其基础是能源的可用性,以及各种表面和大气特征。图片版权:NASA / JPL / University of Arizona / University of Idaho
该团队位于普利茅斯大学的机器人和神经系统中心,他们已经“”训练“”了这个网络,根据是否最像现在的地球、早期的地球、火星、金星或土星的卫星泰坦,将行星分成五种不同的类型。这五个都是已知有大气层的岩态天体,是太阳系中最适合居住的星球之一。毕肖普先生评论道:我们现在对这些ANNs感兴趣,因为他们对一个假想智能的星际飞船进行了探索,这是一种对太阳系外行星系统的扫描。
研究大面积、可部署、平面菲涅尔天线的使用,以便从远距离的星际探测器传回地球数据,如果该技术将来用于机器人航天器,这将是必要的。大气观测——被称为光谱的五种太阳系天体,被作为输入到网络,然后被要求根据行星类型对它们进行分类。由于目前已知的生命只存在于地球上,所以分类使用了“生命概率”度规,这是基于对五种目标类型的相对较好的大气和轨道性质。毕肖普通过上百个不同的谱线对网络进行了训练,每个谱线都有几百个参数,这些参数都有助于适应居住环境。
这些输入代表了来自测试行星大气光谱的数值。输出层包含一个“生命的概率”,它是基于输入与五个太阳系统目标相似度的测量。输入通过网络中一系列隐藏的层,这些层是相互连接的,使网络能够“学习”哪些谱线的模式对应于特定的行星类型。图片版权:Bishop / Plymouth University
到目前为止,该网络在呈现之前从未见过的测试光谱剖面时表现良好。该项目的主管安杰洛·安杰洛西博士说:考虑到目前的结果,这一方法可能会被证明对分类不同类型的系外行星非常有用,它们使用来自地面和近地观测站的结果。这一技术可能也适合于为未来的观测选择目标,考虑到即将到来的太空任务,如ESA的Ariel space任务和NASA的詹姆斯·韦伯太空望远镜光谱细节的增加。
(免责声明:本网站内容主要来自原创、合作伙伴供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。 )